基于不同曳力模型水平管密相气力输送流动特性分析

李永鑫, 周甲伟, 徐耀杰, 张亦明, 魏烨东, 刘增辉

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (23) : 221-230.

PDF(4206 KB)
PDF(4206 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (23) : 221-230. DOI: 10.19554/j.cnki.1001-3563.2025.23.024
自动化与智能化技术

基于不同曳力模型水平管密相气力输送流动特性分析

  • 李永鑫1, 周甲伟1,*, 徐耀杰1, 张亦明1, 魏烨东1, 刘增辉2
作者信息 +

Analysis of Dense-phase Pneumatic Conveying Flow Characteristics of Horizontal Pipes Based on Different Drag Models

  • LI Yongxin1, ZHOU Jiawei1,*, XU Yaojie1, ZHANG Yiming1, WEI Yedong1, LIU Zenghui2
Author information +
文章历史 +

摘要

目的 揭示常用数值模拟曳力模型对颗粒水平运动状态影响的机理。方法 基于CFD-DEM数值模拟方法,从颗粒固相浓度、管内压力损失变化、气固两相速度分布、气体-壁面切应力及颗粒-壁面切应力和气相湍流强度等角度,对比Gidaspow等4种商用软件中常用曳力模型模拟水平直管密相气力输送的过程特性。结果 随着轴向距离的增加,4种模型预测固相浓度均先增大后减小,且管内沉积区面积逐渐减小、悬浮区面积逐渐增大;4种曳力模型预测的气体-壁面切应力随轴向距离的增加而减小,颗粒-壁面切应力随轴向距离的增加而增加;气相湍流强度随轴向距离的增加呈现出先增大后减小的趋势,且管道中心处气相湍流强度最大,越靠近壁面处气体湍流强度越小。结论 Wen-Yu模型预测了最大的水平管固相浓度、最小的单位管长压降(最小单位压降为1 000.76 Pa/m)、最小的颗粒速度以及最大气相湍流强度,Syamlal-O'Brien模型则与之相反。

Abstract

The work aims to reveal the mechanism of how commonly used numerical simulation drag models affect the horizontal motion state of particles. Based on the CFD-DEM numerical simulation method, the process characteristics of horizontal straight pipe dense-phase pneumatic conveying simulated by the commonly used drag models in four commercial software such as Gidaspow were compared from the perspectives of particle solid phase concentration, variation of pressure loss in the pipe, velocity distribution of gas-solid two-phase, gas-wall shear stress, particle-wall shear stress and gas phase turbulence intensity. With the increase of axial distance, the solid phase concentrations predicted by the four models all increased first and then decreased, and the area of the deposition zone in the tube gradually decreased while the area of the suspension zone gradually increased. The gas-wall shear stress predicted by the four drag force models decreased with the increase of the axial distance, and the particle-wall shear stress increased with the increase of the axial distance. The intensity of gas-phase turbulence showed a trend of first increasing and then decreasing with the increase of the axial distance. Moreover, the intensity of gas-phase turbulence was the greatest at the center of the pipeline, and it decreased as it got closer to the wall. The Wen-Yu model predicts the maximum solid phase concentration in the horizontal pipe, the minimum pressure drop per unit tube length, with the minimum pressure drop being 1 000.76 Pa/m, the minimum particle velocity, and the maximum atmospheric turbulence intensity. The Syamlal-O'Brien model is the opposite.

关键词

CFD-DEM数值模拟 / 流动特性 / 曳力模型 / 气固两相流

Key words

CFD-DEM numerical simulation / flow characteristics / drag models / gas-solid two-phase flow

引用本文

导出引用
李永鑫, 周甲伟, 徐耀杰, 张亦明, 魏烨东, 刘增辉. 基于不同曳力模型水平管密相气力输送流动特性分析[J]. 包装工程. 2025, 46(23): 221-230 https://doi.org/10.19554/j.cnki.1001-3563.2025.23.024
LI Yongxin, ZHOU Jiawei, XU Yaojie, ZHANG Yiming, WEI Yedong, LIU Zenghui. Analysis of Dense-phase Pneumatic Conveying Flow Characteristics of Horizontal Pipes Based on Different Drag Models[J]. Packaging Engineering. 2025, 46(23): 221-230 https://doi.org/10.19554/j.cnki.1001-3563.2025.23.024
中图分类号: TQ022    TB126   

参考文献

[1] 高杰, 刘志超, 李忱. 气力输送技术的应用及发展浅析[J]. 沈阳工程学院学报(自然科学版), 2022, 18(2): 54-57.
GAO J, LIU Z C, LI C.Analysis on the Application and Development of Pneumatic Conveying Technology[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2022, 18(2): 54-57.
[2] 杨宝华. 密相气力输送系统常见问题及影响因素[J]. 石油化工设备, 2019, 48(2): 72-76.
YANG B H.Effect Factor Analysis of Problems of Dense Phase Pneumatic Conveying System[J]. Petro-Chemical Equipment, 2019, 48(2): 72-76.
[3] 周甲伟, 闫翔宇, 郑泽冰, 等. 气力输送关键装置及管内流动特性研究现状及展望[J]. 过程工程学报, 2023, 23(5): 649-661.
ZHOU J W, YAN X Y, ZHENG Z B, et al.Research Status and Prospect of Key Installations and Flow Characteristics of Pneumatic Conveying[J]. The Chinese Journal of Process Engineering, 2023, 23(5): 649-661.
[4] 宋海豪, 徐雪萌, 尚坤, 等. 基于CFD-DEM耦合模型的弯管起旋装置优化及减磨效果研究[J]. 包装工程, 2025, 46(13): 186-196.
SONG H H, XU X M, SHANG K, et al.Optimization of the Bending Pipe Swirling Device and the Wear Reduction Effect Based on the CFD-DEM Coupling Model[J]. Packaging Engineering, 2025, 46(13): 186-196.
[5] WANG J W.Effect of Granular Temperature and Solid Concentration Fluctuation on the Gas-Solid Drag Force: A CFD Test[J]. Chemical Engineering Science, 2017, 168: 11-14.
[6] 刘洋, 霍鹏举, 李晓宏, 等. 基于非均匀曳力模型的CFB循环特性研究[J]. 工程热物理学报, 2020, 41(6): 1440-1444.
LIU Y, HUO P J, LI X H, et al.Study on Circulating Characteristics of a Circulating Fluidized Bed Using the Non-Uniform Drag Model[J]. Journal of Engineering Thermophysics, 2020, 41(6): 1440-1444.
[7] 胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528.
HU S W, LIU X H.Multiscale Trans-Regime EMMS Modeling of Gas-Solid Fluidization Systems[J]. CIESC Journal, 2022, 73(6): 2514-2528.
[8] PRAJAPATI C, NADDA M, SINGH K, et al.Artificial Neural Network-Based EMMS Drag Model for Fluidized Beds[J]. Powder Technology, 2025, 465: 121217.
[9] HWANG S, PAN J H, FAN L S.Neural-Network-Based Drag Force Model for Polydisperse Assemblies of Irregular-Shaped Particles[J]. Powder Technology, 2024, 440: 119783.
[10] 周海军, 熊源泉. 曳力模型对水平管高压密相气力输送模拟的影响[J]. 东南大学学报(自然科学版), 2020, 50(3): 496-506.
ZHOU H J, XIONG Y Q.Effect of Drag Models on Simulation of Dense-Phase Pneumatic Conveying in Horizontal Pipe under High Pressure[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(3): 496-506.
[11] 李慧君, 王业库, 张久意. 基于鼓泡流化床的新型曳力模型的验证分析[J]. 动力工程学报, 2022, 42(8): 715-721.
LI H J, WANG Y K, ZHANG J Y.Verification and Analysis of a New Drag Model Based on Bubbling Fluidized Bed[J]. Journal of Chinese Society of Power Engineering, 2022, 42(8): 715-721.
[12] 张庆来, 李斌, 王雨萌, 等. 曳力模型对喷动床气固两相流数值模拟结果影响的介尺度分析[J]. 华北电力大学学报(自然科学版), 2023, 50(4): 119-126.
ZHANG Q L, LI B, WANG Y M, et al.Mesoscale Analysis of Influence of Drag Model on Numerical Simulation Results of Gas-Solid Two-Phase Flow in Spouted Bed[J]. Journal of North China Electric Power University (Natural Science Edition), 2023, 50(4): 119-126.
[13] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
ZHOU H J, XIONG Y Q.Simulation Study on Influence of Supplementary Gas on Dense-Phase Pneumatic Conveying in Horizontal Pipe under High Pressure[J]. CIESC Journal, 2020, 71(2): 602-613.
[14] WEN C Y, YU Y H.Mechanics of Fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111.
[15] SYAMLAL M, O’BRIEN T J. The Derivation of a Drag Coefficient Formula from Velocity-Voidage Correlations[J]. Technical Note, US Department of Energy, Office of Fossil Energy, NETL, Morgantown, WV, 1987: 1-20.
[16] DING J M, GIDASPOW D.A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow[J]. AIChE Journal, 1990, 36(4): 523-538.
[17] LU H L, GIDASPOW D.Hydrodynamics of Binary Fluidization in a Riser: CFD Simulation Using Two Granular Temperatures[J]. Chemical Engineering Science, 2003, 58(16): 3777-3792.
[18] GUAN Q L, LIU Z, FANG X H, et al.Experimental Study on Dense-Phase Pneumatic Conveying of Coal Powder at High Pressures[J]. Clean Energy, 2017, 1(1): 50-67.
[19] 蔡海峰, 熊源泉, 周海军. 水平弯管高压密相气力输送数值模拟[J]. 东南大学学报(自然科学版), 2019, 49(1): 154-163.
CAI H F, XIONG Y Q, ZHOU H J.Numerical Simulation on Dense Phase Pneumatic Conveying under High Pressure in Horizontal Bend[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 154-163.
[20] 侯艳君, 王庆辉, 周甲伟, 等. 基于CFD-DEM的气力输送变径管中颗粒流动特性分析[J]. 矿冶工程, 2023, 43(6): 6-10.
HOU Y J, WANG Q H, ZHOU J W, et al.Flow Characteristics Analysis of Particles in Pneumatic Conveying with Tapered Pipeline Based on CFD-DEM[J]. Mining and Metallurgical Engineering, 2023, 43(6): 6-10.
[21] 付飞飞, 许传龙, 王式民. 密相气力输送中气固两相流动特性多源信息分析[J]. 化工学报, 2012, 63(10): 3070-3079.
FU F F, XU C L, WANG S M.Multi-Sensors Integration for Flow Characterization of Dense Phase Pneumatic Conveying of Coal Powder[J]. CIESC Journal, 2012, 63(10): 3070-3079.
[22] 王超, 高文宾, 张靖宇. 基于静电传感器的稀相气力输送流动特性分析[J]. 电子测量与仪器学报, 2016, 30(9): 1320-1326.
WANG C, GAO W B, ZHANG J Y.Flow Characteristics Analysis of Dilute Phase Pneumatic Conveying Based on Electrostatic Sensor[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(9): 1320-1326.
[23] 禹言芳, 石博文, 孟辉波, 等. 基于CFD-DEM算法的气力输送气固两相流特性分析[J]. 化工进展, 2024, 43(3): 1133-1144.
YU Y F, SHI B W, MENG H B, et al.Characteristics Analysis of Gas Solid Two-Phase Flow in Pneumatic Conveying Based on CFD-DEM Algorithm[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1133-1144.
[24] 李铁, 刘勇, 杨志瑞, 等. 水平管粉煤密相气力输送过程截面涡特性的数值研究[J]. 东北电力大学学报, 2017, 37(6): 62-69.
LI T, LIU Y, YANG Z R, et al.Numerical Simulation on Characteristics of Vortex in Cross Section of Dense Phase Pneumatic Conveying of Pulverized Coal in Horizontal Pipe[J]. Journal of Northeast Electric Power University, 2017, 37(6): 62-69.

基金

国家自然科学基金(52275110); 河南省高校科技创新人才(24HASTIT044); 中原英才计划(育才系列)—中原青年科技创新人才

PDF(4206 KB)

Accesses

Citation

Detail

段落导航
相关文章

/