碳量子点的杂原子掺杂及在食品包装中的应用进展

李凯齐, 马晓军, 李冬娜, 于丽丽

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (23) : 80-87.

PDF(8041 KB)
PDF(8041 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (23) : 80-87. DOI: 10.19554/j.cnki.1001-3563.2025.23.008
健康营养食品包装开放式创新与产业化

碳量子点的杂原子掺杂及在食品包装中的应用进展

  • 李凯齐, 马晓军*, 李冬娜, 于丽丽
作者信息 +

Progress in Heteroatom Doping of Carbon Quantum Dots and Their Applications in Food Packaging

  • LI Kaiqi, MA Xiaojun*, LI Dongna, YU Lili
Author information +
文章历史 +

摘要

目的 系统梳理杂原子掺杂这一关键改性手段对碳量子点性能的调控作用,并总结功能化碳量子点在食品包装领域的最新应用进展,旨在为开发下一代智能、安全、高效的食品包装材料提供理论依据。方法 结合国内外相关文献,综述碳量子点的制备方法,重点分析氮(N)、硫(S)、磷(P)等杂原子掺杂对调控碳量子点电子结构、光学性能及表面功能的策略,总结功能化碳量子点在食品包装中的应用。结论 未来应进一步精准调控碳量子点的结构和性能,提高消费者对食品包装中CQDs的感知和接受程度,探索CQDs与食物成分的相互作用机制,为碳量子点在食品智能指示、抗菌保鲜、安全检测与防伪包装方面应用提供科学依据。

Abstract

The work aims to systematically review the regulatory effect of the key modification strategy of heteroatom doping on the properties of carbon quantum dots, and summarize the latest application progress of functionalized carbon quantum dots in the field of food packaging, so as to provide a theoretical basis for the development of next-generation intelligent, safe, and efficient food packaging materials. Based on relevant Chinese and international literature, the preparation methods of CQDs were summarized, with a focus on analyzing strategies for heteroatom doping with nitrogen (N), sulfur (S), phosphorus (P), etc., to regulate the electronic structure, optical properties, and surface functionalities of CQDs. Then, the applications of functionalized CQDs in food packaging were also summarized. In the future, further precise regulation of the structure and properties of CQDs is required to enhance consumer perception and acceptance of CQDs in food packaging, explore the interaction mechanisms between CQDs and food components, and provide a scientific basis for the application of CQDs in intelligent food indicators, antibacterial preservation, safety detection, and anti-counterfeiting packaging.

关键词

碳量子点 / 杂原子掺杂 / 食品包装 / 荧光

Key words

carbon quantum dot / heteroatom doping / food packaging / fluorescence

引用本文

导出引用
李凯齐, 马晓军, 李冬娜, 于丽丽. 碳量子点的杂原子掺杂及在食品包装中的应用进展[J]. 包装工程. 2025, 46(23): 80-87 https://doi.org/10.19554/j.cnki.1001-3563.2025.23.008
LI Kaiqi, MA Xiaojun, LI Dongna, YU Lili. Progress in Heteroatom Doping of Carbon Quantum Dots and Their Applications in Food Packaging[J]. Packaging Engineering. 2025, 46(23): 80-87 https://doi.org/10.19554/j.cnki.1001-3563.2025.23.008
中图分类号: TB484   

参考文献

[1] LIU C, BAO L, YANG M L, et al.Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and Π-Electron System[J]. The Journal of Physical Chemistry Letters, 2019, 10(13): 3621-3629.
[2] LIU M L, CHEN B B, LI C M, et al.Carbon Dots: Synthesis, Formation Mechanism, Fluorescence Origin and Sensing Applications[J]. Green Chemistry, 2019, 21(3): 449-471.
[3] 涂倩, 陈良哲, 吴超狄, 等. 碳量子点的改性及在防伪领域的研究进展[J/OL]. 精细化工, 2025: 1-16(2025-06-18). https://link.cnki.net/doi/10.13550/j.jxhg.20250193.
TU Q, CHEN L Z, WU C D, et al. Research Progress on Modification and Anti-Counterfeiting of Carbon Quantum Dots[J/OL]. Fine Chemicals, 2025: 1-16(2025-06-18). https://link.cnki.net/doi/10.13550/j.jxhg.20250193.
[4] XU X, RAY R, GU Y, et al.Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737.
[5] CHAO-MUJICA F J, GARCIA-HERNÁNDEZ L, CAMACHO-LÓPEZ S, et al. Carbon Quantum Dots by Submerged Arc Discharge in Water: Synthesis, Characterization, and Mechanism of Formation[J]. Journal of Applied Physics, 2021, 129(16): 163301.
[6] HU S L, LIU J, YANG J L, et al.Laser Synthesis and Size Tailor of Carbon Quantum Dots[J]. Journal of Nanoparticle Research, 2011, 13(12): 7247-7252.
[7] MING H, MA Z, LIU Y, et al.Large Scale Electrochemical Synthesis of High Quality Carbon Nanodots and Their Photocatalytic Property[J]. Dalton Transactions, 2012, 41(31): 9526-9531.
[8] YANG S W, SUN J, LI X B, et al.Large-Scale Fabrication of Heavy Doped Carbon Quantum Dots with Tunable-Photoluminescence and Sensitive Fluorescence Detection[J]. Journal of Materials Chemistry A, 2014, 2(23): 8660-8667.
[9] ZONG J, ZHU Y H, YANG X L, et al.Synthesis of Photoluminescent Carbogenic Dots Using Mesoporous Silica Spheres as Nanoreactors[J]. Chemical Communications, 2011, 47(2): 764-766.
[10] KUMAR P, BHATT G, KAUR R, et al.Synthesis and Modulation of the Optical Properties of Carbon Quantum Dots Using Microwave Radiation[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(9): 724-731.
[11] ZHAI X Y, ZHANG P, LIU C J, et al.Highly Luminescent Carbon Nanodots by Microwave-Assisted Pyrolysis[J]. Chemical Communications, 2012, 48(64): 7955-7957.
[12] SHAHBA H, SABET M.Two-Step and Green Synthesis of Highly Fluorescent Carbon Quantum Dots and Carbon Nanofibers from Pine Fruit[J]. Journal of Fluorescence, 2020, 30(4): 927-938.
[13] WANG L, ZHOU H S.Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application[J]. Analytical Chemistry, 2014, 86(18): 8902-8905.
[14] MOLAEI M J. Principles, Mechanisms,Application of Carbon Quantum Dots in Sensors: A Review[J]. Analytical Methods, 2020, 12(10): 1266-1287.
[15] SHAN X Y, CHAI L J, MA J J, et al.B-Doped Carbon Quantum Dots as a Sensitive Fluorescence Probe for Hydrogen Peroxide and Glucose Detection[J]. Analyst, 2014, 139(10): 2322-2325.
[16] GUO X H, YANG R D, WANG Y, et al.Surface Engineering and Concentration-Dependent Emission Activated Flexible Tunable Fluorescence from Lignin-Based N-Doped Carbon Dots[J]. Chemical Engineering Journal, 2024, 498: 155146.
[17] JIA Z Y, HU J, LU P, et al.Carbon Quantum Dots from Carbohydrate-Rich Residue of Birch Obtained Following Lignin-First Strategy[J]. Bioresource Technology, 2024, 408: 131206.
[18] LIU Y Y, JIANG L P, LI B J, et al.Nitrogen Doped Carbon Dots: Mechanism Investigation and Their Application for Label Free CA125 Analysis[J]. Journal of Materials Chemistry B, 2019, 7(19): 3053-3058.
[19] CHANDRA S, PATRA P, PATHAN S H, et al.Luminescent S-Doped Carbon Dots: An Emergent Architecture for Multimodal Applications[J]. Journal of Materials Chemistry B, 2013, 1(18): 2375-2382.
[20] LI H T, SUN C H, VIJAYARAGHAVAN R, et al.Long Lifetime Photoluminescence in N, S Co-Doped Carbon Quantum Dots from an Ionic Liquid and Their Applications in Ultrasensitive Detection of Pesticides[J]. Carbon, 2016, 104: 33-39.
[21] 沈钰杰. 硫掺杂碳量子点对不同离子的检测[D]. 广州: 广州大学, 2021.
SHEN Y J.Detecting Different Ions with Sulfur-Doped Carbon Quantum Dots[D]. Guangzhou: Guangzhou University, 2021.
[22] YANG F, HE X, WANG C X, et al.Controllable and Eco-Friendly Synthesis of P-Riched Carbon Quantum Dots and Its Application for Copper (II) Ion Sensing[J]. Applied Surface Science, 2018, 448: 589-598.
[23] GAO R Y, YI X D, LIU X Y, et al.Phosphorus-Doped Carbon Dots as an Effective Flame Retardant for Transparent PVA Composite Films with Enhanced UV Shielding Property[J]. Reactive and Functional Polymers, 2024, 197: 105877.
[24] KALAIYARASAN G, JOSEPH J, KUMAR P.Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection[J]. ACS Omega, 2020, 5(35): 22278-22288.
[25] DONG Y Q, PANG H C, YANG H B, et al.Carbon-Based Dots Co-Doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission[J]. Angewandte Chemie International Edition, 2013, 52(30): 7800-7804.
[26] OMER K M, TOFIQ D I, HASSAN A Q.Solvothermal Synthesis of Phosphorus and Nitrogen Doped Carbon Quantum Dots as a Fluorescent Probe for Iron(III)[J]. Microchimica Acta, 2018, 185(10): 466.
[27] GONG X J, LU W J, LIU Y, et al.Low Temperature Synthesis of Phosphorous and Nitrogen Co-Doped Yellow Fluorescent Carbon Dots for Sensing and Bioimaging[J]. Journal of Materials Chemistry B, 2015, 3(33): 6813-6819.
[28] ZHU L L, SHEN D K, WANG Q, et al.Green Synthesis of Tunable Fluorescent Carbon Quantum Dots from Lignin and Their Application in Anti-Counterfeit Printing[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56465-56475.
[29] LIU Y P, CHENG D K, WANG B Z, et al.Carbon Dots-Inked Paper with Single/Two-Photon Excited Dual-Mode Thermochromic Afterglow for Advanced Dynamic Information Encryption[J]. Advanced Materials, 2024, 36(31): 2403775.
[30] LI Z C, LI D Z, WEI S X, et al.Chitosan-Derived Carbon Aerogel Modified with Lignin Carbon Quantum Dots for Efficient Solar Evaporation[J]. Chemical Engineering Journal, 2024, 486: 150157.
[31] KUMARI R, PAL K, KARMAKAR P, et al.pH-Responsive Mn-Doped Carbon Dots for White-Light-Emitting Diodes, Fingerprinting, and Bioimaging[J]. ACS Applied Nano Materials, 2019, 2(9): 5900-5909.
[32] LIAO J F, WU M Y, LI J R, et al.Photo-Induced Fluorescence Discoloration of Carbon Dots for Advanced Dynamic Information Encryption[J]. Advanced Optical Materials, 2025, 13(5): 2402472.
[33] CHENG X Y, ZHAO Q L, KANG J H, et al.Cellulose Nanofiber/Polyvinyl Alcohol-Based pH-Responsive Films Containing Anthocyanin and Carbon Dots[J]. ACS Applied Polymer Materials, 2023, 5(8): 6307-6317.
[34] LOHRASBI NEJAD S, SHEKARCHIZADEH H.An Agar Hydrogel-CuNPs/N@CQDS Dual-Mode Colorimetric/Fluorescent Indicator for Non-Destructive Monitoring of Banana Ripening[J]. Food Chemistry, 2025, 473: 143098.
[35] YAN H J, LI P Y, WEN F Z, et al.Green Synthesis of Carbon Quantum Dots from Plant Turmeric Holds Promise as Novel Photosensitizer for in vitro Photodynamic Antimicrobial Activity[J]. Journal of Materials Research and Technology, 2023, 22: 17-34.
[36] NGUYEN M H, LE A T, PHAM V D, et al.A Comprehensive Study on the Antibacterial Activities of Carbon Quantum Dots Derived from Orange Juice Against Escherichia Coli[J]. Applied Sciences, 2024, 14(6): 2509.
[37] ZHOU J, ZHOU X X, LIN X J, et al.A Dual-Mode Fluorometric and Colorimetric Sensor Based on N-Doped Carbon Dots for Selective and Sensitive Detection of Nitrite in Food Samples[J]. Sensors and Actuators B: Chemical, 2024, 416: 136045.
[38] RANI M, SHANKER U, KAITH B S. Eco-Friendly N, P-CQDS from Phyllanthus Emblica: A Fluorescent Nanoprobe for Ultra-Sensitive Detection of Plasticizers in Packaged Dairy Products[J]. Food Chemistry, 2025, 482: 144221.
[39] SANDEEP D H, RADHA KRUSHNA B R, NAVYA N, et al. Sustainable Fabrication of Fluorescent Carbon Quantum Dots as an Optical Amplifier in Modern Agriculture, Anti-Counterfeiting, Food Packing and Intelligent pH Detection[J]. Materials Today Sustainability, 2024, 27: 100855.

基金

海南省重点研发项目(ZDYF2025SHFZ056); 天津市自然科学基金重点项目(23JCZDJC00620)

PDF(8041 KB)

Accesses

Citation

Detail

段落导航
相关文章

/