目的 以A型放射性容器为对象,通过容器冲击试验与模拟冲击仿真模型相结合来验证容器性能的可靠性,并最终构建一套试验与模拟相互印证的高效分析方法,为A型放射性容器的安全设计与性能评估提供精准、可靠的依据。方法 基于SolidWorks三维建模软件与ABAQUS有限元分析软件,建立中子源运输容器Johnson-Cook模型,对自主设计的中子源容器进行抗冲击性能仿真分析,验证结构设计的可行性。结果 对中子源放射性容器顶面进行贯穿试验和容器跌落仿真分析,结果表明,金属棒的冲击对容器未产生较大的塑性形变,应力及应变范围以冲击点为中心呈圆形状向周围递减,对称位置数值相近,实际试验与仿真模拟之间的平均误差率为11.6%;两者变形位置与变形位移大小非常接近,实际试验的最大变形位移约为13 mm,仿真模型试验的最大位移约为10.5 mm;在容器跌落仿真试验中,底面、顶面、侧面和45°角跌落的4种情况下,跌落受到的冲击能量因容器保护缓冲作用被分散吸收。结论 中子源运输容器结构设计合理,作为主要储存放射源的容器内部结构受到的最大应力均在安全范围,不会造成放射性内容物的泄漏,试验结合仿真模型可以较准确地预测中子源容器运输过程中的冲击性能,进一步提高运输效率。
Abstract
With Type A radioactive containers as the subject, the work aims to combine container impact test with simulated impact models to validate the performance reliability of the container and finally establish an efficient analysis method that mutually corroborates experimental and simulation results, providing precise and reliable basis for the safe design and performance evaluation of Type A radioactive containers. Based on SolidWorks three-dimensional modeling software and ABAQUS finite element analysis software, the Johnson-Cook model of neutron source transport container was established, and the simulation analysis of impact resistance performance of independently-designed neutron source container was carried out to verify the feasibility of the structural design. The penetration test and container drop simulation analysis on the top surface of the radioactive container of neutron source showed that the impact of the metal bar did not produce large plastic deformation to the container, and the stress and strain values ranged from the center of the impact point to the surrounding area in the form of a circular decreasing symmetric position with similar values, and the average error rate between the actual test and the simulation was 11.6%. The deformation position and deformation displacement were extremely close to each other. The maximum deformation displacement in the actual test was about 13 mm, and the maximum displacement in the simulation model test was about 10.5 mm. In the simulation test of the container drop, the impact energy of the drop in the four cases of the bottom surface, top surface, side surface, and 45° angle was dispersed and absorbed due to the protective buffer effect of the container. The structure of the neutron source transport container is reasonably designed, and the maximum stress on the internal structure of the container as the main storage of radioactive sources is within the safe range, which will not cause the leakage of radioactive contents, and the test combined with the simulation model can more accurately predict the impact performance of the neutron source container during transportation, which can further improve the transportation efficiency.
关键词
中子源 /
运输包装容器 /
抗冲击性能 /
数值模拟
Key words
neutron source /
transport container design /
impact resistance /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭纪美, 邹宇斌, 唐国有, 等. 厚铍靶~9Be(d, n)反应中子产额测量[J]. 原子能科学技术, 2008, 42(12): 1069-1072.
GUO J M, ZOU Y B, TANG G Y, et al.Measurement of Neutron Yield of 9Be(D, n) Reaction with Thick Target[J]. Atomic Energy Science and Technology, 2008, 42(12): 1069-1072.
[2] BERGAOUI K, REGUIGUI N, BROWN C, et al.Evaluation of Neutron and Gamma Dose in a New Deuterium-Deuterium Fusion Neutron Generator Facility Using MCNP and Experimental Methods[J]. Applied Radiation and Isotopes, 2019, 146: 90-98.
[3] LIM J, YANG Y Y, DHO H, et al.Safety Evaluation of Transportation Containers for Radioactive Material Using Equivalent Test Models[J]. Nuclear Engineering and Technology, 2025, 57(5): 103365.
[4] DEB S, MURALEEDHARAN A, IMMANUEL R J, et al.Establishing Flow Stress Behaviour of Ti-6Al-4V Alloy and Development of Constitutive Models Using Johnson-Cook Method and Artificial Neural Network for Quasi-Static and Dynamic Loading[J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103338.
[5] 陈治江, 蔡吉庆, 张志强, 等. TC-I型放射性材料运输容器的设计[J]. 包装工程, 2017, 38(21): 6-9.
CHEN Z J, CAI J Q, ZHANG Z Q, et al.Design of TC-I Type Transport Cask for Radioactive Materials[J]. Packaging Engineering, 2017, 38(21): 6-9.
[6] 汪剑, 沈景凤, 仲梁维. 核物质包装体的跌落仿真分析[J]. 电子科技, 2017, 30(10): 112-115.
WANG J, SHEN J F, ZHONG L W.Analysis of Falling Simulation of Nuclear Material Packaging[J]. Electronic Science and Technology, 2017, 30(10): 112-115.
[7] 黄宇飞, 赵晓鑫, 张光亮. 放射性运输容器抗冲击仿真分析[J]. 印刷与数字媒体技术研究, 2025(2): 120-125.
HUANG Y F, ZHAO X X, ZHANG G L.Simulation Analysis of Impact Resistance of Radioactive Transport Container[J]. Printing and Digital Media Technology Study, 2025(2): 120-125.
[8] MENG D Y, LI G Q, ZHANG J G, et al.Simulation Research on Safety Verification of 60Co Transportation Package[J]. Progress in Nuclear Science and Technology, 2019, 6: 162-165.
[9] 张建岗, 李国强, 孙洪超, 等. 放射性物品运输容器试验验证经验总结[J]. 辐射防护, 2018, 38(5): 422-427.
ZHANG J G, LI G Q, SUN H C, et al.Safe Test Experience on Radioactivematerial Transport Packages[J]. Radiation Protection, 2018, 38(5): 422-427.
[10] NALLA MOHAMED M.Evaluation of Johnson-Cook Constitutive Material Model Parameters for Additively Manufactured AlSi10Mg Alloy Test Specimens[J]. Materials Today: Proceedings, 2023, 72: 2044-2048.
[11] 李国强, 李志强, 罗晓渭. 一种医疗放射源运输容器冲击试验和数值仿真[J]. 辐射防护, 2020, 40(1): 52-57.
LI G Q, LI Z Q, LUO X W.Impact Test and Numerical Simulation on a Model Container for Transport of Medical Radioactive Sources[J]. Radiation Protection, 2020, 40(1): 52-57.
[12] OKA J M, VAIDYA R U, DAVIS J T, et al.Nuclear Material Container Drop Testing Using Finite Element Analysis with Verification Using Digital Image Correlation[J]. Nuclear Engineering and Design, 2024, 421: 113057.
[13] 生态环境部, 国家市场监督管理总局. 放射性物品安全运输规程: GB 11806—2019[S]. 北京: 中国环境出版社, 2019.
Ministry of Ecology and Environment, State Administration for Market Regulation. Safety Transport Regulations for Radioactive Materials: GB 11806-2019[S]. Beijing: China Environment Press, 2019.
[14] 李国强, 孙谦, 庄大杰, 等. 放射性物品运输包装容器安全试验简述[J]. 包装工程, 2025, 46(7): 234-239.
LI G Q, SUN Q, ZHUANG D J, et al.Overview of Safety Test for Radioactive Materials Transport Packages[J]. Packaging Engineering, 2025, 46(7): 234-239.
[15] 詹乐昌, 包捷, 郝慧杰, 等. 放射性物品分类方法研究[J]. 核技术, 2023, 46(1): 43-49.
ZHAN L C, BAO J, HAO H J, et al.Research on Methodology of Radioactive Materials[J]. Nuclear Techniques, 2023, 46(1): 43-49.
[16] 焦力敏, 王智鹏, 孙谦, 等. 乏燃料运输和储存容器中子屏蔽材料应用及研究现状[J]. 包装工程, 2024, 45(11): 266-274.
JIAO L M, WANG Z P, SUN Q, et al.Application and Research Status of Spent Fuel Transportation and Storage Cask Neutron Shielding Materials[J]. Packaging Engineering, 2024, 45(11): 266-274.
[17] 杜振兴, 周士潮, 马少鹏. 法向压力影响电阻应变片测量结果的机制研究[J]. 实验力学, 2024, 39(3): 278-286.
DU Z X, ZHOU S C, MA S P.Research on the Mechanism of the Effect of Normal Pressure on Resistance Strain Gauge Measurement[J]. Journal of Experimental Mechanics, 2024, 39(3): 278-286.
[18] 程旭, 顾友林, 王石刚. 基于电磁效应的电磁流体环仿真分析[J]. 计算机仿真, 2018, 35(10): 89-93.
CHENG X, GU Y L, WANG S G.Simulation Analysis of Electromagnetic Fluid Ring Based on Electromagnetic Effect[J]. Computer Simulation, 2018, 35(10): 89-93.
[19] SONG H Y.Non-Linear Analysis of Composite Structure Subjected to Impact Load Based on Johnson-Cook Constitutive Model[J]. International Journal of Non-Linear Mechanics, 2025, 178: 105176.
[20] ZOU Z C, HE L, ZHOU T, et al.Research on Inverse Identification of Johnson-Cook Constitutive Parameters for Turning 304 Stainless Steel Based on Coupling Simulation[J]. Journal of Materials Research and Technology, 2023, 23: 2244-2262.
基金
国家自然科学基金(52205331); 北京市科技计划重点项目(KZ202210017023); 国家自然科学基金联合基金重点支持项目(U22B20127)