Zr-MOFs基自降解复合面料研究进展

袁祖培, 唐俊雄, 唐国庆, 殷妮, 徐溶, 冯燕来, 胡昊轩

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 323-334.

PDF(4846 KB)
PDF(4846 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 323-334. DOI: 10.19554/j.cnki.1001-3563.2025.17.034
装备防护

Zr-MOFs基自降解复合面料研究进展

  • 袁祖培, 唐俊雄, 唐国庆, 殷妮, 徐溶, 冯燕来, 胡昊轩
作者信息 +

Research Progress on Zr-MOFs-based Self-degradation Composite Fabrics

  • YUAN Zupei, TANG Junxiong, TANG Guoqing, YIN Ni, XU Rong, FENG Yanlai, HU Haoxuan
Author information +
文章历史 +

摘要

目的 化学战剂(CWAs)的高毒性对人类健康构成了严重威胁,目前针对CWAs的防护主要依靠物理阻隔和吸附过滤技术,以及事后化学消毒剂的应用。现有的化学防护服本身不具备降解化学战剂的功能,仅能起到物理隔离和有限的吸附作用,这不仅增加了穿戴者的负担和热应激风险,更在脱卸和处理过程中存在潜在的二次暴露风险,因此开展赋予防护装备主动降解化学战剂功能的研究,旨在突破现有技术的被动局限性,构建更安全、高效的防护体系。方法 概述Zr-MOFs/纺织纤维复合面料的制备方法,以及它对神经性和糜烂性毒剂的降解研究进展,详细介绍MOF预成型、颗粒沉积和MOFs后成型3种制备方法,强调静电纺丝技术和纤维预处理的重要性。结果 锆基金属有机框架(Zr-MOFs)材料因其高比表面积和优异的催化活性,成为吸附和降解CWAs的理想选择。结论 基于Zr-MOFs的纺织复合材料在降解CWAs方面表现出色,得到广泛研究,最后对其目前面临的问题和未来的发展方向进行了探讨。

Abstract

The high toxicity of chemical warfare agents (CWAs) poses serious threat to human health. At present, the protection against CWAs mainly relies on physical barrier and adsorption filtration technology and the application of chemical disinfectants after the exposure. However, the existing chemical protective clothing does not have the function of degrading chemical warfare agents, and can only play the role of physical isolation and limited adsorption, which not only increases the burden and heat stress risk of the wearer, but also causes a potential secondary exposure risk in the process of removal and handling. Therefore, the work aims to carry out the research on giving protective equipment the function of active degradation of chemical warfare agents to break through the passive limitations of existing technologies and build a safer and more efficient protection system. The preparation methods of Zr-MOFs/textile fiber composite fabrics and the research progress on the degradation of nerve and blister agents were outlined, detailing three preparation methods of MOF pre-formation, particle deposition, and post-formation of MOFs and emphasizing the importance of electrospinning technology and fiber pre-treatment. Zirconium-based metal-organic frameworks (Zr-MOFs) were ideal candidates for the adsorption and degradation of CWAs due to their high specific surface area and excellent catalytic activity. Textile composite materials based on Zr-MOFs have shown excellent performance in the degradation of CWAs, attracting extensive research attention. Finally, the current challenges and future research directions in this field are discussed.

关键词

化学战剂 / 锆基金属有机框架 / 纺织纤维 / 复合面料 / 制备方法 / 降解

Key words

chemical warfare agents / zirconium-based metal-organic frameworks / textiles / composite fabrics / preparation methods / degradation

引用本文

导出引用
袁祖培, 唐俊雄, 唐国庆, 殷妮, 徐溶, 冯燕来, 胡昊轩. Zr-MOFs基自降解复合面料研究进展[J]. 包装工程(技术栏目). 2025, 46(17): 323-334 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.034
YUAN Zupei, TANG Junxiong, TANG Guoqing, YIN Ni, XU Rong, FENG Yanlai, HU Haoxuan. Research Progress on Zr-MOFs-based Self-degradation Composite Fabrics[J]. Packaging Engineering. 2025, 46(17): 323-334 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.034
中图分类号: TB333   

参考文献

[1] GANESAN K, RAZA S K, VIJAYARAGHAVAN R.Chemical Warfare Agents[J]. Journal of Pharmacy and Bioallied Sciences, 2010, 2(3): 166-178.
[2] KIANI S S, FAROOQ A, AHMAD M, et al.Impregnation on Activated Carbon for Removal of Chemical Warfare Agents (CWAs) and Radioactive Content[J]. Environmental Science and Pollution Research, 2021, 28(43): 60477-60494.
[3] HUNDHAMMER T, LINDNER R, CACCIA L, et al.Management of Decontamination in Chemical Accidents: A Laboratory Model[J]. Scientific Reports, 2023, 13(1): 8411.
[4] WANG H, MAHLE J J, TOVAR T M, et al.Solid-Phase Detoxification of Chemical Warfare Agents Using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 21109-21116.
[5] LIAN X, YAN B.Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14869-14876.
[6] KIAEI K, NORD M T, CHIU N C, et al.Degradation of G-Type Nerve Agent Simulant with Phase-Inverted Spherical Polymeric-MOF Catalysts[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19747-19755.
[7] LIU Y Y, HOWARTH A J, VERMEULEN N A, et al.Catalytic Degradation of Chemical Warfare Agents and Their Simulants by Metal-Organic Frameworks[J]. Coordination Chemistry Reviews, 2017, 346: 101-111.
[8] CHO K Y, SEO J Y, KIM H J, et al.Facile Control of Defect Site Density and Particle Size of UiO-66 for Enhanced Hydrolysis Rates: Insights into Feasibility of Zr(Ⅳ)-Based Metal-Organic Framework (MOF) Catalysts[J]. Applied Catalysis B: Environmental, 2019, 245: 635-647.
[9] LYU J F, ZHANG X, LI P, et al.Exploring the Role of Hexanuclear Clusters as Lewis Acidic Sites in Isostructural Metal-Organic Frameworks[J]. Chemistry of Materials, 2019, 31(11): 4166-4172.
[10] PHADATARE A, KANDASUBRAMANIAN B.Metal Organic Framework Functionalized Fabrics for Detoxification of Chemical Warfare Agents[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 569-586.
[11] BALASUBRAMANIAN S, KULANDAISAMY A J, BABU K J, et al.Metal Organic Framework Functionalized Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents - A Review[J]. Industrial & Engineering Chemistry Research, 2021, 60(11): 4218-4239.
[12] LÓPEZ-MAYA E, MONTORO D C, MARLENY RODRÍGUEZ-ALBELO D L, et al. Textile/Metal-Organic- Framework Composites as Self-Detoxifying Filters for Chemical-Warfare Agents[J]. Angewandte Chemie International Edition, 2015, 54(23): 6790-6794.
[13] LEE D T, ZHAO J J, PETERSON G W, et al.Catalytic "MOF-Cloth" Formed via Directed Supramolecular Assembly of UiO-66-NH2 Crystals on Atomic Layer Deposition-Coated Textiles for Rapid Degradation of Chemical Warfare Agent Simulants[J]. Chemistry of Materials, 2017, 29(11): 4894-4903.
[14] VOROS C, DIAS J, TIMPERLEY C M, et al.The Risk Associated with Organophosphorus Nerve Agents: From Their Discovery to Their Unavoidable Threat, Current Medical Countermeasures and Perspectives[J]. Chemico-Biological Interactions, 2024, 395: 110973.
[15] ARONIADOU-ANDERJASKA V, FIGUEIREDO T H, DE ARAUJO FURTADO M, et al. Mechanisms of Organophosphate Toxicity and the Role of Acetylcholinesterase Inhibition[J]. Toxics, 2023, 11(10): 866.
[16] GAO M Y, YANG J C, ZHANG Y Q, et al.Adsorption of Chemical Warfare Agents and Their Simulants by Metal-Organic Frameworks: GCMC and DFT Studies[J]. Journal of Environmental Chemical Engineering, 2025, 13(3): 116628.
[17] BARTON D H F, JAMIR J D, DAVIS A K, et al. Doubly Protective MOF-Photo-Fabrics: Facile Template-Free Synthesis of PCN-222-Textiles Enables Rapid Hydrolysis, Photo-Hydrolysis and Selective Oxidation of Multiple Chemical Warfare Agents and Simulants[J]. Chemistry - A European Journal, 2021, 27(4): 1465-1472.
[18] SILVA V B, SANTOS Y H, HELLINGER R, et al.Organophosphorus Chemical Security from a Peaceful Perspective: Sustainable Practices in Its Synthesis, Decontamination and Detection[J]. Green Chemistry, 2022, 24(2): 585-613.
[19] MOON D S, PROUSSALOGLOU E, PETERSON G W, et al.Detoxification of Chemical Warfare Agents Using a Zr6-Based Metal-Organic Framework/Polymer Mixture[J]. Chemistry - A European Journal, 2016, 22(42): 14864-14868.
[20] VALDEZ C A, LEIF R N.Analysis of Organophosphorus-Based Nerve Agent Degradation Products by Gas Chromatography-Mass Spectrometry (GC-MS): Current Derivatization Reactions in the Analytical Chemist's Toolbox[J]. Molecules, 2021, 26(15): 4631.
[21] NAKAGAWA T, TU A T.Murders with VX: Aum Shinrikyo in Japan and the Assassination of Kim Jong-Nam in Malaysia[J]. Forensic Toxicology, 2018, 36(2): 542-544.
[22] LIAO Y J, SHERIDAN T R, LIU J, et al.Probing the Mechanism of Hydrolytic Degradation of Nerve Agent Simulant with Zirconium-Based Metal-Organic Frameworks[J]. ACS Catalysis, 2023, 14(1): 437-448.
[23] EL-SAYED E M, YUAN Y D, ZHAO D, et al. Zirconium Metal-Organic Cages: Synthesis and Applications[J]. Accounts of Chemical Research, 2022, 55(11): 1546-1560.
[24] LI H Y, KONG X J, HAN S D, et al.Metalation of Metal-Organic Frameworks: Fundamentals and Applications[J]. Chemical Society Reviews, 2024, 53(11): 5626-5676.
[25] ZHANG X, WASSON M C, SHAYAN M, et al.A Historical Perspective on Porphyrin-Based Metal-Organic Frameworks and Their Applications[J]. Coordination Chemistry Reviews, 2021, 429: 213615.
[26] KIM J Y, KANG J, CHA S, et al.Stability of Zr-Based UiO-66 Metal-Organic Frameworks in Basic Solutions[J]. Nanomaterials, 2024, 14(1): 110.
[27] BERIJANI K, VAKILI-NEZHAAD G R. The Performance of MOFs and Rich Structure Types of Stable Zr-MOFs in Storing Clean Energy: Hydrogen[J]. Journal of Energy Storage, 2025, 116: 115928.
[28] JEROZAL R T, PITT T A, MACMILLAN S N, et al.High-Concentration Self-Assembly of Zirconium- and Hafnium-Based Metal-Organic Materials[J]. Journal of the American Chemical Society, 2023, 145(24): 13273-13283.
[29] CHEN X, LI Y J, FU Q, et al.An Efficient Modulated Synthesis of Zirconium Metal-Organic Framework UiO-66[J]. RSC Advances, 2022, 12(10): 6083-6092.
[30] YE X, LIU D X.Metal-Organic Framework UiO-68 and Its Derivatives with Sufficiently Good Properties and Performance Show Promising Prospects in Potential Industrial Applications[J]. Crystal Growth & Design, 2021, 21(8): 4780-4804.
[31] WANG K Y, YANG Z T, ZHANG J Q, et al.Creating Hierarchical Pores in Metal-Organic Frameworks via Postsynthetic Reactions[J]. Nature Protocols, 2023, 18(2): 604-625.
[32] RAJA D S, TSAI D H.Recent Advances in Continuous Flow Synthesis of Metal-Organic Frameworks and Their Composites[J]. Chemical Communications, 2024.
[33] Winters W M W, Zhou Chao, Hou Jing-weil. Order-to-DisorderTransition in a Zirconium-Based Metal-Organic Framework[J]. Chemistry of Materials, 2024, 36(17): 8400-8411.
[34] SHI L, YANG Z N, SHA F R, et al.Design, Synthesis and Applications of Functional Zirconium-Based Metal-Organic Frameworks[J]. Science China Chemistry, 2023, 66(12): 3383-3397.
[35] TAN K, PANDEY H, WANG H, et al.Defect Termination in the UiO-66 Family of Metal-Organic Frameworks: The Role of Water and Modulator[J]. Journal of the American Chemical Society, 2021, 143(17): 6328-6332.
[36] JAJKO G, CALERO S, KOZYRA P, et al.Defect-Induced Tuning of Polarity-Dependent Adsorption in Hydrophobic-Hydrophilic UiO-66[J]. Communications Chemistry, 2022, 5: 120.
[37] BAGHERI M, MASOOMI M Y.Quasi-Metal Organic Frameworks: Preparation, Applications and Future Perspectives[J]. Coordination Chemistry Reviews, 2022, 468: 214643.
[38] ADEGOKE K A, AKPOMIE K G, OKEKE E S, et al.UiO-66-Based Metal-Organic Frameworks for CO2 Catalytic Conversion, Adsorption and Separation[J]. Separation and Purification Technology, 2024, 331: 125456.
[39] ZOU Y H, HUANG P Y, SI D D, et al.Porous Metal-Organic Framework Liquids for Enhanced CO2 Adsorption and Catalytic Conversion[J]. Angewandte Chemie International Edition, 2021, 60(38): 20915-20920.
[40] BATOOL S R, SUSHKEVICH V L, VAN BOKHOVEN J A. Correlating Lewis Acid Activity to Extra-Framework Aluminum Species in Zeolite Y Introduced by Ion-Exchange[J]. Journal of Catalysis, 2022, 408: 24-35.
[41] SEMIVRAZHSKAYA O O, SALIONOV D, CLARK A H, et al.Deciphering the Mechanism of Crystallization of UiO-66 Metal-Organic Framework[J]. Small, 2023, 19(52): 2305771.
[42] BI F K, ZHANG X D, CHEN J F, et al.Excellent Catalytic Activity and Water Resistance of UiO-66-Supported Highly Dispersed Pd Nanoparticles for Toluene Catalytic Oxidation[J]. Applied Catalysis B: Environmental, 2020, 269: 118767.
[43] CHEN K, LIU Q Q, QIU Z Y, et al.Highly Dispersed Platinum and Phosphomolybdic Acid (PMo) on the UiO-66 Metal-Organic Framework (MOF) for Highly Efficient and Selective Hydrogenation of Nitroaromatics[J]. Journal of Materials Chemistry A, 2024, 12(35): 23940-23947.
[44] LERMA-BERLANGA B, GANIVET C R, ALMORA- BARRIOS N, et al.Effect of Linker Distribution in the Photocatalytic Activity of Multivariate Mesoporous Crystals[J]. Journal of the American Chemical Society, 2021, 143(4): 1798-1806.
[45] ZHU P F, CAO H Y, YANG H, et al.One-Pot Synthesis of Ni(Ⅱ)-Doped UiO-66-NH2 for Enhanced Photocatalytic CO2 Reduction to CO with Efficient Charge Transfer[J]. Applied Surface Science, 2024, 652: 159348.
[46] JAHAN I, ISLAM M A, RUPAM T H, et al.Enhanced Water Sorption Onto Bimetallic MOF-801 for Energy Conversion Applications[J]. Sustainable Materials and Technologies, 2022, 32: e00442.
[47] LIN S, ZHAO Y F, BEDIAKO J K, et al.Structure-Controlled Recovery of Palladium(Ⅱ) from Acidic Aqueous Solution Using Metal-Organic Frameworks of MOF-802, UiO-66 and MOF-808[J]. Chemical Engineering Journal, 2019, 362: 280-286.
[48] LEE J H, NGUYEN T T T, NGUYEN L H T, et al. Functionalization of Zirconium-Based Metal-Organic Frameworks for Gas Sensing Applications[J]. Journal of Hazardous Materials, 2021, 403: 124104.
[49] GAO Y, YAO L F, ZHANG S Z, et al.Versatile Crosslinking Synthesis of an EDTA-Modified UiO-66-NH2/ Cotton Fabric Composite for Simultaneous Capture of Heavy Metals and Dyes and Efficient Degradation of Organophosphate[J]. Environmental Pollution, 2023, 316: 120622.
[50] LI W L, YU Z, ZHANG Y X, et al.Scalable Multifunctional MOFs-Textiles via Diazonium Chemistry[J]. Nature Communications, 2024, 15(1): 5297.
[51] KHAN M A, MUJAHID M.A Review on Recent Advances in Chitosan Based Composite for Hemostatic Dressings[J]. International Journal of Biological Macromolecules, 2019, 124: 138-147.
[52] LIU H R, SUN Z Y, GUO C C.Chemical Modification of Silk Proteins: Current Status and Future Prospects[J]. Advanced Fiber Materials, 2022, 4(4): 705-719.
[53] HARI P K.Types and Properties of Fibres and Yarns Used in Weaving[M]// Woven Textiles. Amsterdam: Elsevier, 2020: 3-34.
[54] AHMADIJOKANI F, MOLAVI H, BAHI A, et al.Metal-Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment[J]. Advanced Functional Materials, 2022, 32(51): 2207723.
[55] GUO P W, GUO W T, LI Y H, et al.Permeable Self-Association of Metal-Organic Framework 808/Ag-Based Fiber Membrane for Broad-Spectrum and Highly Efficient Degradation of Biological and Chemical War Agents[J]. ACS Applied Materials & Interfaces, 2024, 16(39): 52842-52855.
[56] LUO H B, LIN F R, LIU Z Y, et al.MOF-Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2933-2939.
[57] KO Y, BAE E J, K CHITALE S, et al. Washable and Reusable Zr-Metal-Organic Framework Nanostructure/Polyacrylonitrile Fibrous Mats for Catalytic Degradation of Real Chemical Warfare Agents[J]. ACS Applied Nano Materials, 2022, 5(7): 9657-9665.
[58] DONG C, YANG J J, XIE L H, et al.Catalytic Ozone Decomposition and Adsorptive VOCs Removal in Bimetallic Metal-Organic Frameworks[J]. Nature Communications, 2022, 13: 4991.
[59] SEO J Y, CHO K Y, LEE J H, et al.Continuous Flow Composite Membrane Catalysts for Efficient Decomposition of Chemical Warfare Agent Simulants[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32778-32787.
[60] KALAJ M, COHEN P β S M. Spray-Coating of Catalytically Active MOF-Polythiourea through Postsynthetic Polymerization[J]. Angewandte Chemie International Edition, 2020, 59(33): 13984-13989.
[61] XIONG J, LI A L, LIU Y, et al.Scalable and Hierarchically Designed MOF Fabrics by Netting MOFs into Nanofiber Networks for High-Performance Solar-Driven Water Purification[J]. Journal of Materials Chemistry A, 2021, 9(37): 21005-21012.
[62] PETERSON G W, LEE D T, BARTON H F, et al.Fibre-Based Composites from the Integration of Metal-Organic Frameworks and Polymers[J]. Nature Reviews Materials, 2021, 6: 605-621.
[63] HAN P J, SHENG S L, QIN Q, et al.Mild in Situ Growth Strategy for Constructing High-Strength Zr-MOFs/PVDF Fabrics and Efficient Degradation of Chemical Warfare Agent Simulants[J]. ACS Applied Polymer Materials, 2024, 6(23): 14377-14388.
[64] LEE D T, ZHAO J J, OLDHAM C J, et al.UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44847-44855.
[65] LIU F, LI W B, YANG J J, et al.MOF-808 on Polyacrylonitrile Nanofibers for Degradation of Chemical Warfare Agents[J]. ACS Applied Nano Materials, 2023, 6(19): 18437-18445.
[66] QIN H J, LI X P, ZHOU C, et al.Porous Polyacrylonitrile Nanofiber Membranes Modified with UiO-66-NH2 Nanosheets for Excellent Detoxification of Nerve Agent Simulant[J]. Separation and Purification Technology, 2025, 362: 131721.
[67] YANG Y, HUANG C C, HU X, et al.MOF-808 Thick Crystal Film Grown In-Situ on Electrospun Fiber with Encapsulated Ag-PMo10V2O40 for Efficient Decontamination of both Vesicant and Nerve Agent Simulants[J]. Separation and Purification Technology, 2025, 364: 132368.
[68] SUMMERS M, OH J, LUNGU C T.Determination of Activated Carbon Fiber Adsorption Capacity for Several Common Organic Vapors: Applications for Respiratory Protection[J]. Journal of the Air & Waste Management Association, 2022, 72(6): 570-580.
[69] YANG J, HE X Q, DAI J, et al.Photo-Assisted Enhancement Performance for Rapid Detoxification of Chemical Warfare Agent Simulants over Versatile ZnIn2S4/UiO-66-NH2 Nanocomposite Catalysts[J]. Journal of Hazardous Materials, 2021, 417: 126056.
[70] WANG R X, LI Z W, LI X S, et al.Plasma Jet Decontamination of Sulfur Mustard and Its Analogues in Water by Oxidation Effect[J]. Journal of Water Process Engineering, 2023, 53: 103647.
[71] ZHOU Y Y, GAO Q, ZHANG L J, et al.Combining Two into One: A Dual-Function H5PV2Mo10O40@MOF-808 Composite as a Versatile Decontaminant for Sulfur Mustard and Soman[J]. Inorganic Chemistry, 2020, 59(16): 11595-11605.
[72] HAO Y J, PAPAZYAN E K, BA Y, et al.Mechanism-Guided Design of Metal-Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions[J]. ACS Catalysis, 2022, 12(1): 363-371.
[73] CHEUNG Y H, MA K K, VAN LEEUWEN H C, et al. Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats[J]. Journal of the American Chemical Society, 2021, 143(40): 16777-16785.
[74] MORGAN S E, O'CONNELL A M, JANSSON A, et al. Stretchable and Multi-Metal-Organic Framework Fabrics via High-Yield Rapid Sorption-Vapor Synthesis and Their Application in Chemical Warfare Agent Hydrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 31279-31284.
[75] ZHAO J J, LEE D T, YAGA R W, et al.Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs[J]. Angewandte Chemie International Edition, 2016, 55(42): 13224-13228.

基金

军队预研项目(0730-226012JP0141/01.8)

PDF(4846 KB)

Accesses

Citation

Detail

段落导航
相关文章

/