固相法与SGC法制备Zn掺杂Co2Z型铁氧体的磁性能对比研究

赵俊濠, 李维, 李启凡, 王孟奇

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 314-322.

PDF(5283 KB)
PDF(5283 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 314-322. DOI: 10.19554/j.cnki.1001-3563.2025.17.033
装备防护

固相法与SGC法制备Zn掺杂Co2Z型铁氧体的磁性能对比研究

  • 赵俊濠1a,1b, 李维1b,2,*, 李启凡2,3, 王孟奇1b,2
作者信息 +

Comparison of Magnetic Properties of Zn-doped Z-type Ferrite Prepared by Solid State and SGC Methods

  • ZHAO Junhao1a,1b, LI Wei1b,2,*, LI Qifan2,3, WANG Mengqi1b,2
Author information +
文章历史 +

摘要

目的 通过使用不同的制备方法,提升Co2Z型铁氧体的磁导率,并探究其自然共振峰随Zn含量变化的一般规律及影响因素。方法 分别通过固相法和SGC法在相近的工艺条件下制备Zn掺杂Co2Z型铁氧体以进行晶粒形貌、物相成分、静磁性能和磁导率的系统对比。结果 SGC法在1 240 °C下仅煅烧5 h合成的Zn掺杂Co2Z型铁氧体为纯Z相,且μ''峰值于2.1 GHz附近达到1.27,相比同温度配方下煅烧10 h的固相法铁氧体提升了约72%。固相法随Zn含量变化共振峰变化剧烈且不连续,SGC法则基本为连续缓和的变化。结论 使用SGC法代替固相法能制备更纯的Co2Z相,在更短的烧结时间下显著提升目标频段下铁氧体的磁性能。两者共振峰随Zn含量变化的差异主要是W相的含量不同导致,易磁化方向的变化和W相的影响使固相法在不同Zn含量下产生共振峰的不连续性变化。

Abstract

The work aims to improve the magnetic permeability of Co2Z-type ferrites by different fabrication methods and explore the general law and affecting factors of their natural resonance peaks changing with Zn content. Zn-doped Co2Z-type ferrites were prepared via solid state method and SGC method respectively under similar process conditions. The samples were systematically compared in terms of grain morphology, phase composition, static magnetic properties, and permeability. The ferrites synthesized by SGC method, calcined at 1 240  °C for only 5  hours, exhibited a pure Z phase and achieved a maximum imaginary permeability of 1.27 near 2.1  GHz—approximately 72% higher than that of the solid state counterpart calcined at the same temperature for 10  hours. Furthermore, when the resonance peaks of the solid state samples exhibited abrupt and discontinuous shifts with varying Zn content, those of the SGC samples changed in a smoother and more continuous manner. This study demonstrates that replacing the solid state method with the SGC method yields purer Co2Z phases and significantly enhances the magnetic properties in the target frequency band within shorter sintering time. The divergence in the resonance peak variations between the two methods is primarily attributed to differences in the amount of W-phase present. The variation in the easy magnetization direction and the effect of the W-phase contribute to discontinuous variations in the resonance peaks observed in solid state samples.

关键词

溶胶凝胶自蔓延燃烧法 / 固相反应法 / 锌掺杂 / 六角铁氧体 / 自然共振

Key words

sol-gel self-propagating combustion method / solid state reaction method / zinc doping / hexaferrites / natural resonance

引用本文

导出引用
赵俊濠, 李维, 李启凡, 王孟奇. 固相法与SGC法制备Zn掺杂Co2Z型铁氧体的磁性能对比研究[J]. 包装工程(技术栏目). 2025, 46(17): 314-322 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.033
ZHAO Junhao, LI Wei, LI Qifan, WANG Mengqi. Comparison of Magnetic Properties of Zn-doped Z-type Ferrite Prepared by Solid State and SGC Methods[J]. Packaging Engineering. 2025, 46(17): 314-322 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.033
中图分类号: TB332   

参考文献

[1] QIU Q, GUO Y B, SUN Q, et al.Studies on Preparation and Reversed Electromagnetic Interference Shielding Behavior from GHz to THz of Multifunctional Wearable Ni/CP Composite[J]. Chemical Engineering Journal, 2025, 503: 158224.
[2] LIU R Q, YANG L H, WANG L Y, et al.An Investigation on Preparation and Wave-Absorbing Properties of Carbon Nanotube/Ferrite/Polyaniline Complexes[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(32): 2065.
[3] IQBAL S, KHATOON H, KOTNALA R K, et al.Bi-Doped Barium Ferrite Decorated Polythiophene Nanocomposite: Influence of Bi-Doping on Structure, Morphology, Thermal and EMI Shielding Behavior for X-Band[J]. Journal of Materials Science, 2020, 55(33): 15894-15907.
[4] LIU J, ZHANG H B, SUN R H, et al.Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding[J]. Advanced Materials, 2017, 29(38): 1702367.
[5] LI Q, ZHANG Z, QI L P, et al.Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures[J]. Advanced Science, 2019, 6(8): 1801057.
[6] DEHGHANI DASTJERDI O, SHOKROLLAHI H, MIRSHEKARI S.A Review of Synthesis, Characterization, and Magnetic Properties of Soft Spinel Ferrites[J]. Inorganic Chemistry Communications, 2023, 153: 110797.
[7] RANA G, DHIMAN P, KUMAR A, et al.Recent Advances on Nickel Nano-Ferrite: A Review on Processing Techniques, Properties and Diverse Applications[J]. Chemical Engineering Research and Design, 2021, 175: 182-208.
[8] HARRIS V G.Modern Microwave Ferrites[J]. IEEE Transactions on Magnetics, 2012, 48(3): 1075-1104.
[9] WANG B C, WEI J Q, YANG Y, et al.Investigation on Peak Frequency of the Microwave Absorption for Carbonyl Iron/Epoxy Resin Composite[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(8): 1101-1103.
[10] JUNEJA S, PRATAP R, SHARMA R.Semiconductor Technologies for 5G Implementation at Millimeter Wave Frequencies-Design Challenges and Current State of Work[J]. Engineering Science and Technology, an International Journal, 2021, 24(1): 205-217.
[11] MAHMOOD S H, ABU-ALJARAYESH I.Hexaferrite Permanent Magnetic Materials[M]. Millersville: Materials Research Forum LLC, 2016: 153-166.
[12] HARRIS V G, GEILER A, CHEN Y J, et al.Recent Advances in Processing and Applications of Microwave Ferrites[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(14): 2035-2047.
[13] KANDWAL A, CHAUHAN J V, LUADANG B.Coupled C-Band Stacked Antenna Using Different Dielectric Constant Substrates for Communication Systems[J]. Engineering Science and Technology, an International Journal, 2016, 19(4): 1801-1807.
[14] SINGH V P, KUMAR G, KUMAR A, et al.Structural, Magnetic and Mössbauer Study of BaLa x Fe12-x O19 Nanohexaferrites Synthesized via Sol-Gel Auto-Combustion Technique[J]. Ceramics International, 2016, 42(4): 5011-5017.
[15] CUSHING B L, KOLESNICHENKO V L, O’CONNOR C J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles[J]. Chemical Reviews, 2004, 104(9): 3893-3946.
[16] LIM J T, KIM C S. Hyperfine Structure and Magnetic Properties of Zn Doped Co2-Z Hexaferrite Investigated by High-Field Mössbauer Spectroscopy[J]. Journal of Applied Physics, 2015, 117(17): 17B743.
[17] PARK M H, KANG Y M.Fabrication and Properties of Z-Type Sr3Co2-xZnxFe24O41 Hexaferrites and Their Composites with Epoxy[J]. Journal of Magnetism and Magnetic Materials, 2019, 491: 165628.
[18] ZHANG H J, YAO X, ZHANG L Y.The Preparation and Microwave Properties of Ba3Zn Z Co2-Z Fe24O41 Ferrite by Citrate Sol-Gel Process[J]. Materials Science and Engineering: B, 2001, 84(3): 252-257.
[19] PULLAR R C.Hexagonal Ferrites: A Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics[J]. Progress in Materials Science, 2012, 57(7): 1191-1334.
[20] ZHENG Z L, FENG Q Y, CHEN Y J, et al.High-Frequency Magnetic Properties of Ca-Substituted Co2Z and Co2W Barium Hexaferrite Composites[J]. IEEE Transactions on Magnetics, 2018, 54(6): 2800506.
[21] HUO X Y, SU H, WANG Y, et al.Effects of Zn Substitution on High-Frequency Properties of Ba1.5Sr1.5Co2-x ZnxFe22O41 Hexaferrites[J]. Ceramics International, 2021, 47(12): 17120-17127.
[22] TAHIR W, KHAN M A, RASOOL R T, et al.Quantifying Co-Zn Contents for Compositional Tailoring of Strontium W-Type Hexaferrites for Useful Applications[J]. Physica B: Condensed Matter, 2023, 659: 414872.
[23] GLOBUS A, DUPLEX P, GUYOT M.Determination of Initial Magnetization Curve from Crystallites Size and Effective Anisotropy Field[J]. IEEE Transactions on Magnetics, 1971, 7(3): 617-622.
[24] QIU J X, GU M Y, SHEN H G.Microwave Absorption Properties of Al- and Cr-Substituted M-Type Barium Hexaferrite[J]. Journal of Magnetism and Magnetic Materials, 2005, 295(3): 263-268.
[25] XU J J, JI G J, ZOU H F, et al.Structural, Dielectric and Magnetic Properties of Nd-Doped Co2Z-Type Hexaferrites[J]. Journal of Alloys and Compounds, 2011, 509(11): 4290-4294.
[26] CHO H S, KIM S S.The Effect of Zn and Ni Substitution on Magnetic and Microwave Absorbing Properties of Co2W Hexagonal Ferrites[J]. Ceramics International, 2019, 45(7): 9406-9409.
[27] LI Z W, WU Y P, LIN G Q, et al.Static and Dynamic Magnetic Properties of CoZn Substituted Z-Type Barium Ferrite Ba3 Cox Zn2-xFe24O41 Composites[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(1): 145-151.
[28] GAIROLA S P, VERMA V, SINGH A, et al.Modified Composition of Barium Ferrite to Act as a Microwave Absorber in X-Band Frequencies[J]. Solid State Communications, 2010, 150(3/4): 147-151.

基金

国家自然科学基金(52473078)

PDF(5283 KB)

Accesses

Citation

Detail

段落导航
相关文章

/