小型装配式冷库的温度场分布及监测布点优化研究

黄逸茗, 李保国, 王欣

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 202-221.

PDF(18617 KB)
PDF(18617 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 202-221. DOI: 10.19554/j.cnki.1001-3563.2025.17.022
农产品保鲜与食品包装

小型装配式冷库的温度场分布及监测布点优化研究

  • 黄逸茗, 李保国, 王欣*
作者信息 +

Temperature Field Distribution and Optimization of Monitoring Sensor Layout in Small Assembly Cold Storage

  • HUANG Yiming, LI Baoguo, WANG Xin*
Author information +
文章历史 +

摘要

目的 针对小型装配式冷库传统均匀布点温度监测方式的局限性,提出一种基于数值模拟和试验验证的优化布点方法。方法 采用数值模拟研究货物堆垛方式、风速及开门操作对冷库温度场和速度场的影响,分析库内热点和温度超标体积的变化,进而基于聚类算法对温度监测布点进行优化。结果 不同工况下,冷库内温度场的温度波动区域均在风机射出冷空气流经区域和库门附近,平均温度位于库内几何中心处。货物堆垛方式会显著影响库内的温度-速度耦合场,风速增大可改善库内温度场的均匀性。开门操作120 s后,温度显著升高,且温度超标区域几乎覆盖库内全部区域。基于聚类算法优化有效减少了冗余的温度监测布点,最终形成的优化布点方案由10个温度监测点组成。与常规布点方案相比,优化方案的监测范围可有效覆盖冷库各区域温度变化,对工况变化的响应迅速。结论 本研究为小型装配式冷库温度监测布点方案设计提供了兼具科学性与实用性的解决方案,其监测效能可满足冷链食品安全管理的精准化与实时性要求。

Abstract

The work aims to propose an optimized sensor layout method based on experimental verification and numerical simulation to deal with the limitations of traditional uniform temperature monitoring sensors layout methods used in small assembly cold storage. The temperature and velocity fields under different stacking methods of goods, wind speed and door opening operation were performed using numerical simulation, then variations in hot spots and temperature-exceeding volumes were evaluated. Subsequently, the temperature monitoring sensor layout was optimized using the K-Means algorithm. The study revealed that under different working conditions, the temperature fluctuation area of the cold storage was mainly located in the region where the cold air was discharged by the fan or the region near the door. While the high-temperature region was prone to appear on the upper region, and its geometric center could reflect the average temperature of the cold storage. The stacking methods of goods significantly affected the temperature-velocity coupling field inside the cold storage. An increase in wind speed could improve temperature uniformity inside the cold storage. After keeping the door open for 120 s, a significant temperature increase was observed, with the areas of elevated temperature covering almost the entire cold storage. Based on K-Means optimization, a layout scheme consisting of 10 temperature monitoring nodes was designed, and redundant temperature monitoring nodes were effectively reduced. Compared with the traditional layout scheme, the monitoring range of the optimized scheme could effectively cover the temperature variations in each area of the cold storage and respond quickly to changes under different operating conditions. This study provides a scientific and practical solution for the design of temperature monitoring sensor layouts in small assembly cold storage. Its monitoring performance meets the requirements of precision and real-time management in cold-chain food safety.

关键词

小型装配式冷库 / 温度-速度耦合场 / 温度监测 / 布点优化 / 数值模拟

Key words

small assembly cold storage / temperature-velocity coupling field / temperature monitoring / layout optimization / numerical simulation

引用本文

导出引用
黄逸茗, 李保国, 王欣. 小型装配式冷库的温度场分布及监测布点优化研究[J]. 包装工程(技术栏目). 2025, 46(17): 202-221 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.022
HUANG Yiming, LI Baoguo, WANG Xin. Temperature Field Distribution and Optimization of Monitoring Sensor Layout in Small Assembly Cold Storage[J]. Packaging Engineering. 2025, 46(17): 202-221 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.022
中图分类号: TB657.1   

参考文献

[1] 申江, 杨萌. 食品冷链的技术发展[J]. 包装工程, 2015, 36(15): 1-8.
SHEN J, YANG M.Technological Development of Food Cold Chain[J]. Packaging Engineering, 2015, 36(15): 1-8.
[2] NIU H, LIU X Y, WANG B L, et al.Development, Research and Policy Status of Logistics Cold Storage in the Context of Carbon Neutrality: An Overview[J]. Energy and Buildings, 2024, 320: 114606.
[3] 徐霞, 李君豪, 陈云云, 等. 不同工况对间接制冷冷库贮藏能力的影响[J]. 低温与超导, 2022, 50(12): 86-92.
XU X, LI J H, CHEN Y Y, et al.Influence of Different Working Conditions on the Storage Capacity of Indirect Refrigeration Cold Storage[J]. Cryogenics & Superconductivity, 2022, 50(12): 86-92.
[4] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 冷库管理规范: GB/T 30134—2013[S]. 北京: 中国标准出版社, 2014.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Cold Store Management Regulation: GB/T 30134—2013[S]. Beijing: Standards Press of China, 2014.
[5] 中华人民共和国住房和城乡建设部. 冷库设计标准: GB 50072—2021[S]. 北京: 中国计划出版社, 2021.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Design of Cold Store: GB 50072—2021[S]. Beijing: China Planning Press, 2021.
[6] 司徒慧媛, 李玉梅, 高加龙, 等. 模拟冷链流通中温度波动对养殖金鲳鱼鱼肉品质及微生物多样性的影响[J]. 食品科学技术学报, 2022, 40(5): 148-159.
SITU H Y, LI Y M, GAO J L, et al.Effect of Temperature Fluctuation during Simulated Cold Chain Circulation on Meat Quality and Microbial Diversity of Cultured Trachinotus Ovatus[J]. Journal of Food Science and Technology, 2022, 40(5): 148-159.
[7] 韩昕苑, 樊震宇, 从娇娇, 等. 冷冻水产品冷链流通过程中品质变化及调控技术研究进展[J]. 食品科学, 2021, 42(15): 293-299.
HAN X Y, FAN Z Y, CONG J J, et al.Progress in Quality Changes and Control Technologies of Frozen Aquatic Products during Cold Chain Circulation[J]. Food Science, 2021, 42(15): 293-299.
[8] 王硕, 谢晶, 杨凯, 等. 三文鱼冷链流通过程中质构、鲜度及感官品质变化规律与水分迁移相关性[J]. 中国食品学报, 2018, 18(5): 173-184.
WANG S, XIE J, YANG K, et al.The Correlation between Water Distribution and Texture, Freshness and Sensory Quality of Salmon during Low Temperature Logistics[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(5): 173-184.
[9] 徐竞, 王峰, 谭振华, 等. 堆垛方式及送风功率对冷库制冷效果的影响[J]. 食品与机械, 2023, 39(12): 133-138.
XU J, WANG F, TAN Z H, et al.The Influence of Stacking Mode and Air Supply Power on Cooling Effect of Cold Storage[J]. Food & Machinery, 2023, 39(12): 133-138.
[10] 王广海, 郭嘉明, 吕恩利, 等. 出风道参数对冷藏集装箱温度场的影响[J]. 农业机械学报, 2016, 47(10): 293-301.
WANG G H, GUO J M, LÜ E L, et al.Effects of Air-Outlet Duct Parameters on Temperature Distribution in Fresh-Keeping Container[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 293-301.
[11] 张俊杰, 安毓辉. 船舶伙食冷库内气流组织模拟与分析[J]. 船舶工程, 2019, 41(11): 56-61.
ZHANG J J, AN Y H.Numerical Simulation and Analysis of Air Flow Inside Ship’s Food Cold Storage[J]. Ship Engineering, 2019, 41(11): 56-61.
[12] NUTTALL J G, O’LEARY G J, PANOZZO J F, et al. Models of Grain Quality in Wheat—A Review[J]. Field Crops Research, 2017, 202: 136-145.
[13] 国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准食品冷链物流卫生规范: GB 31605—2020[S]. 北京: 中国标准出版社, 2020.
National Health Commission of the People's Republic of China, State Administration for Market Regulation. National Food Safety Standard Hygienic Specifications for Food Cold Chain Logistics: GB 31605—2020[S]. Beijing: Standards Press of China, 2020.
[14] 刘静, 张小栓, 肖新清, 等. 基于多目标决策模糊物元法的冷藏车传感器布点优化[J]. 农业机械学报, 2014, 45(10): 214-219.
LIU J, ZHANG X S, XIAO X Q, et al.Optimal Sensor Layout in Refrigerator Car Based on Multi-Objective Fuzzy Matter Element Method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 214-219.
[15] LIU J, DU S C. Temperature Monitoring for Grape Cold Chain Based on Temporal-Spatial Fusion Theory[J]. Advanced Materials Research, 2014, 1073/1074/1075/1076: 1854-1857.
[16] 任思宇, 张爱军, 刘石川, 等. 基于多目标模糊优化的配电网柔性互联装置运行配置[J]. 南方电网技术, 2020, 14(5): 37-43.
REN S Y, ZHANG A J, LIU S C, et al.Operation Configuration of Flexible Interconnection Device in Distribution Network Based on Multi-Objective Fuzzy Optimization[J]. Southern Power System Technology, 2020, 14(5): 37-43.
[17] 穆瑞杰. 基于遗传算法的地铁车站引导标识布点探析[J]. 郑州大学学报(工学版), 2018, 39(1): 73-77.
MU R J.Research on the Distribution of the Passenger Guide Sign System in Subway Station Based on Genetic Algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2018, 39(1): 73-77.
[18] 顾瀚, 张华, 陈曦, 等. 前置仓装配式冷库动态能耗研究与影响因素分析[J]. 制冷学报, 2021, 42(5): 146-153.
GU H, ZHANG H, CHEN X, et al.Research on Dynamic Energy Consumption of Front Warehouse Assembly Cold Storage and Analysis of Influencing Factors[J]. Journal of Refrigeration, 2021, 42(5): 146-153.
[19] 中华人民共和国商务部. 仓储作业规范: SB/T 10977—2013[S]. 北京: 中国质检出版社, 2013.
Ministry of Commerce of the People's Republic of China. Norm for Warehousing Operation: SB/T 10977—2013[S]. Beijing: China Quality Inspection Press, 2013.
[20] 杜子峥, 谢晶, 朱进林. 数值模拟技术预测风机两种摆放方式对冷库堆垛货物的影响[J]. 食品与机械, 2015, 31(3): 145-149.
DU Z Z, XIE J, ZHU J L.Effects of Two Different Fans Arrangement on Stacking Cargo in Cold Store Based on Numerical Simulation[J]. Food & Machinery, 2015, 31(3): 145-149.
[21] 王冠邦, 张信荣. 冷库预冷流动传热物理场分布研究[J]. 工程热物理学报, 2021, 42(3): 668-675.
WANG G B, ZHANG X R.Study on Distribution of Physical Fields Regarding to Airflow and Heat Transfer of Room Cooling[J]. Journal of Engineering Thermophysics, 2021, 42(3): 668-675.
[22] FATNASSI H, BOULARD T, PONCET C, et al.Optimisation of Greenhouse Insect Screening with Computational Fluid Dynamics[J]. Biosystems Engineering, 2006, 93(3): 301-312.
[23] 谢晶, 缪晨, 杜子峥, 等. 冷库空气幕性能数值模拟与参数优化[J]. 农业机械学报, 2014, 45(7): 189-195.
XIE J, MIAO C, DU Z Z, et al.Numerical Simulation and Parameter Optimization on Performance of Air Curtain in Cold Stores[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 189-195.
[24] 朱文娴, 柯元裕, 卢立新, 等. 食品冷藏保温箱温度场模拟与实验验证[J]. 包装工程, 2018, 39(23): 69-74.
ZHU W X, KE Y Y, LU L X, et al.Temperature Field Simulation and Experimental Verification of Food Refrigerated Incubator[J]. Packaging Engineering, 2018, 39(23): 69-74.
[25] 王延觉, 周丽, 陈焕新, 等. 番茄在冷板冷藏车运输过程中的温度分布[J]. 铁道科学与工程学报, 2007, 4(3): 87-90.
WANG Y J, ZHOU L, CHEN H X, et al.Temperature Distribution of Tomatoes in Hold-over Plate Refrigerated Vehicle during Transporting Period[J]. Journal of Railway Science and Engineering, 2007, 4(3): 87-90.
[26] YU N, WANG T, XU C X, et al.In-Situ Packing Self-Intumescent Aerogel Particles in Rigid Polyurethane Foam towards Thermal Insulation, Flame Retardance and Smoke Suppression[J]. Chemical Engineering Journal, 2025, 503: 158514.
[27] 于勇. FLUENT入门与进阶教程[M]. 北京: 北京理工大学出版社, 2008.
YU Y.FLUENT Introductory and Advanced Tutorial[M]. Beijing: Beijing Insititute of Technology Press, 2008.
[28] 傅泽田, 王大鹏, 张国祥, 等. 冷藏车水产品堆栈方式对温度场的影响[J]. 农业机械学报, 2019, 50(9): 347-356.
FU Z T, WANG D P, ZHANG G X, et al.Simulation and Experiment on Influence of Stacking Mode of Refrigerated Truck Aquatic Products on Temperature Field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 347-356.
[29] 郭嘉明, 吕恩利, 陆华忠, 等. 盒装荔枝果实降温特性数值分析与验证[J]. 农业机械学报, 2016, 47(5): 218-224.
GUO J M, LYU E L, LU H Z, et al.Numerical Analysis and Verification on Characteristics of Temperature Decreasing of Litchi Fruits with Packages[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 218-224.
[30] 胡耀华, 蒋国振, 熊来怡, 等. 猕猴桃冷库内流场的CFD模拟[J]. 农机化研究, 2012, 34(5): 155-159.
HU Y H, JIANG G Z, XIONG L Y, et al.Flow Field Simulation of Cold Storehouse for Kiwi Fruit Based on CFD[J]. Journal of Agricultural Mechanization Research, 2012, 34(5): 155-159.
[31] 卫灵君, 宋春芳, 孟丽媛, 等. 微波加热鸡肉和土豆的传热仿真分析研究[J]. 现代食品科技, 2016, 32(12): 171-177.
WEI L J, SONG C F, MENG L Y, et al.Analysis of a Heat Transfer Model for Microwave Heating of Chicken and Potato[J]. Modern Food Science and Technology, 2016, 32(12): 171-177.
[32] 张皓月, 张忠斌, 顾呈华, 等. 2~8 ℃小型疫苗冷库热性能的实验及模拟[J]. 制冷学报, 2020, 41(6): 140-149.
ZHANG H Y, ZHANG Z B, GU C H, et al.Experimental and Simulation Study on Thermal Performance of Small-Volume Vaccine Cold Storage at 2-8 ℃[J]. Journal of Refrigeration, 2020, 41(6): 140-149.
[33] 潘无忌, 汪新, 赵冰春. 城市环境下大气流动CFD缩尺模拟方法[J]. 空气动力学学报, 2020, 38(5): 908-914.
PAN W J, WANG X, ZHAO B C.CFD Scaled Modelling of Atmospheric Flow in Urban Environment[J]. Acta Aerodynamica Sinica, 2020, 38(5): 908-914.
[34] 冯璐, 李奇峰, 丁露雨, 等. 自然通风牛舍环境监测传感器布局策略对比研究[J]. 家畜生态学报, 2022, 43(2): 74-81.
FENG L, LI Q F, DING L Y, et al.Comparative Research on Sensor Layout Strategy of Natural Ventilation Cowshed Environment Monitoring[J]. Journal of Domestic Animal Ecology, 2022, 43(2): 74-81.
[35] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 食品冷链物流追溯管理要求: GB/T 28843—2012[S]. 北京: 中国标准出版社, 2012.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People’s Republic of China. Management Requirement for Traceability in Food Cold Chain Logistics: GB/T 28843—2012[S]. Beijing: Standards Press of China, 2012.
[36] 戴辉明, 郭雯, 程裕东, 等. 不同形状包装食品在微波加热过程中的三维温度分布[J]. 食品工业科技, 2015, 36(13): 82-86.
DAI H M, GUO W, CHENG Y D, et al.Three- Dimensional Temperature Distribution of the Packaged Foods with Different Shapes during Microwave Heating[J]. Science and Technology of Food Industry, 2015, 36(13): 82-86.
[37] 艾浪湖, 韩佳伟, 任青山, 等. 牛肉胴体预冷库温度时空分布模拟研究[J]. 食品与发酵工业, 2021, 47(12): 123-127.
AI L H, HAN J W, REN Q S, et al.Simulation Study of Temperature Distribution in Time and Space in Beef Carcass Pre-Cooling Room[J]. Food and Fermentation Industries, 2021, 47(12): 123-127.
[38] 黄世苗. 肉制品冷库流场及温度场数值模拟[J]. 制冷, 2022, 41(1): 19-23.
HUANG S M.Numerical Simulation of Cold Storage and Temperature Fields for Meat Products[J]. Refrigeration, 2022, 41(1): 19-23.
[39] 王德明, 于晋泽, 陈爱强, 等. 不同自然冷源引入方案下冷库内流场研究[J]. 低温与超导, 2023, 51(1): 78-84.
WANG D M, YU J Z, CHEN A Q, et al.Study on the Flow Field in Cold Storage under Different Natural Cold Source Introduction Schemes[J]. Cryogenics & Superconductivity, 2023, 51(1): 78-84.
[40] 谢晶, 吴天. 小型冷库开关门过程温度场的数值模拟[J]. 上海水产大学学报, 2006, 15(3): 3333-3339.
XIE J, WU T.Numerical Simulation on Temperature Field in the Doorway of a Minitype Cold Store[J]. Journal of Shanghai Fisheries University, 2006, 15(3): 3333-3339.
[41] ZHAO S Q, DING W M, ZHAO S Q, et al.Adaptive Neural Fuzzy Inference System for Feeding Decision-Making of Grass Carp (Ctenopharyngodon Idellus) in Outdoor Intensive Culturing Ponds[J]. Aquaculture, 2019, 498: 28-36.
[42] 鲁煜建, 方志伟, 李永振, 等. 大型自然通风奶牛舍空气颗粒物浓度监测方法中采样间隔优化[J]. 农业工程学报, 2023, 39(9): 210-216.
LU Y J, FANG Z W, LI Y Z, et al.Optimization of Sampling Intervals for Particulate Matter Concentration Monitoring in a Large Naturally Ventilated Dairy Barn[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 210-216.
[43] 李玥, 穆维松, 褚晓泉, 等. 基于改进量子粒子群的K-means聚类算法及其应用[J]. 控制与决策, 2022, 37(4): 839-850.
LI Y, MU W S, CHU X Q, et al.K-Means Clustering Algorithm Based on Improved Quantum Particle Swarm Optimization and Its Application[J]. Control and Decision, 2022, 37(4): 839-850.
[44] 戴朝辉, 陈昊, 刘莘轶, 等. 基于K-medoids-GBDT- PSO-LSTM组合模型的短期光伏功率预测[J]. 太阳能学报, 2025, 46(1): 654-661.
DAI Z H, CHEN H, LIU X Y, et al.short-Term Photovoltaic Power Prediction Based on k-Medoids-GBDT- Pso-LSTM Combined Model[J]. Acta Energiae Solaris Sinica, 2025, 46(1): 654-661.
[45] 冯雅杰, 文广超, 吴冰洁, 等. 基于空间统计的采煤工作面内断层识别方法[J]. 煤田地质与勘探, 2023, 51(10): 19-26.
FENG Y J, WEN G C, WU B J, et al.A Method for Identifying Faults within Mining Faces Based on Spatial Statistics[J]. Coal Geology & Exploration, 2023, 51(10): 19-26.
[46] 倪萌萌, 李春树, 刘银. 基于粒子群优化K-means聚类算法的快递网点选址方法研究[J]. 宁夏工程技术, 2023, 22(2): 181-186.
NI M M, LI C S, LIU Y.Research on Express Service Outlets Location Based on K-Means Clustering Algorithm Improved by Particle Swarm Optimization[J]. Ningxia Engineering Technology, 2023, 22(2): 181-186.
[47] 韩冬冬, 樊泽阳, 任凯利, 等. 基于K-means算法的自动锁模光纤激光器[J]. 红外与激光工程, 2023, 52(5): 120-127.
HAN D D, FAN Z Y, REN K L, et al.Automatic Mode-Locked Fiber Laser Based on K-Means Algorithm[J]. Infrared and Laser Engineering, 2023, 52(5): 120-127.
[48] 张武, 张嫚嫚, 洪汛, 等. 基于近邻传播算法的茶园土壤墒情传感器布局优化[J]. 农业工程学报, 2019, 35(6): 107-113.
ZHANG W, ZHANG M M, HONG X, et al.Layout Optimization of Soil Moisture Sensor in Tea Plantation Based on Affinity Propagation Clustering Algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 107-113.
[49] 汪涛, 张武, 苗犇犇, 等. 基于改进K-medoids算法的土壤墒情传感器布局优化[J]. 中国农业大学学报, 2022, 27(8): 221-233.
WANG T, ZHANG W, MIAO B B, et al.Layout Optimization of Soil Moisture Sensor Based on the Improved K-Medoids Algorithm[J]. Journal of China Agricultural University, 2022, 27(8): 221-233.
[50] 冯坤旋, 南晓红, 杨巧银, 等. 果蔬冷库进货期间货物温度稳定性的影响因素[J]. 农业工程学报, 2015, 31(20): 294-300.
FENG K X, NAN X H, YANG Q Y, et al.Factors on Goods Temperature Stability in Fruits & Vegetables Cold Storage during the Loading Process[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(20): 294-300.
[51] 张洪一, 曹亚超, 崔海亭. 风机参数对立体冷库气流组织影响的数值模拟[J]. 河北工业科技, 2023, 40(3): 155-164.
ZHANG H Y, CAO Y C, CUI H T.Numerical Simulation of the Effect of Fan Parameters on the Airflow Organization of a Stereoscopic Cold Storage[J]. Hebei Journal of Industrial Science and Technology, 2023, 40(3): 155-164.
[52] BEN TAHER M A, KOUSKSOU T, ZERAOULI Y, et al. Thermal Performance Investigation of Door Opening and Closing Processes in a Refrigerated Truck Equipped with Different Phase Change Materials[J]. Journal of Energy Storage, 2021, 42: 103097.
[53] JEONG J, BENCHIKH LE HOCINE A E, CROQUER S, et al. Numerical Analysis of the Thermoaeraulic Behavior of Air during the Opening of the Door of a Refrigerated Truck Trailer Equipped with Cold Plates[J]. Applied Thermal Engineering, 2022, 206: 118057.
[54] 缪晨, 谢晶. 冷库空气幕流场的非稳态数值模拟及验证[J]. 农业工程学报, 2013, 29(7): 246-253.
MIAO C, XIE J.Unsteady State Numerical Simulation and Verification of Flow Field of Air Curtain in Cold Stores[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 246-253.
[55] 李采琴, 马超, 高加龙, 等. 温度波动对模拟冷链过程牡蛎肉鲜度品质和微生物生长的影响[J]. 广东海洋大学学报, 2024, 44(5): 96-104.
LI C Q, MA C, GAO J L, et al.Effects of Temperature Fluctuation on the Quality and Microbial Growth of Oyster Meat during Simulated Cold Chain Circulation[J]. Journal of Guangdong Ocean University, 2024, 44(5): 96-104.

基金

国家重点研发计划(2022YFF1101104)

PDF(18617 KB)

Accesses

Citation

Detail

段落导航
相关文章

/