目的 基于现有的苹果包装设计,寻求在满足苹果预冷效果的基础上,包装箱抗压强度最高的气孔设计方案。方法 基于流体动力学在Fluent中模拟了在一定初始条件和边界条件下箱内苹果的温度变化历程,在模拟分析过程中,利用UDF(用户自定义函数)加载了模拟苹果生成热和蒸腾热的热源程序。从开孔直径、开孔数量、开孔纵向位置、开孔横向位置4个角度进行单因素试验和对比分析。以箱内所有苹果的最高温度是否达到预期温度作为预冷效果的评价指标。在此基础上开展了纸箱抗压试验。结果 开孔直径、开孔数量、开孔纵向位置均对预冷效果有明显的影响。而开孔横向位置的影响则不明显。当开孔直径为1.6 cm,开孔数量为4,纵向开孔位置处于1、2两层间和3、4两层间时,预冷效果最好。在此基础上进行的纸箱抗压试验发现,横向位置变化对包装箱抗压强度相对明显,当开孔间距为12 cm时,抗压强度最高。结论 开孔方式直接影响着苹果的预冷效果和包装箱的抗压强度,在优化过程中,应以预冷效果为首要考虑因素,在此基础上通过包装箱抗压强度的对比分析得出最优方案。本文的优化设计思路可以为其他开孔纸箱的设计提供一定的参考和帮助。
Abstract
The work aims to seeks to find the design of openings with the highest compressive strength of packaging boxes based on the existing apple packaging design, while satisfying the pre-cooling effect of apples. Based on fluid dynamics, the temperature change process of apples in the box under certain initial conditions and boundary conditions was simulated in Fluent. During the simulation analysis, the UDF (User-Defined Function) was used to load the thermal source program that simulated the formation heat and transpiration heat of apples. A single factor experiment and a comparative analysis were conducted from four perspectives: the diameter of the opening, the number of openings, the longitudinal position of the opening, and the lateral position of the opening. The evaluation index of the pre-cooling effect was whether the maximum temperature of all apples in the box reached the expected temperature. On this basis, the compressive strength test of the carton was carried out. The diameter of the opening, the number of openings, and the longitudinal position of the opening all had a significant impact on the pre-cooling effect. However, the influence of the lateral position of the opening was not obvious. When the diameter of the opening was 1.6 cm, the number of openings was 4, and the longitudinal position of the opening was between the first and second layers and between the third and fourth layers, the pre-cooling effect was the best. Based on this, the compressive strength test of the carton found that the change of lateral position had relatively significant effect on the compressive strength of the packaging box. When the opening spacing was 12 cm, the compressive strength was the highest. The opening method directly affects the pre-cooling effect of apples and the compressive strength of the packaging box. During the optimization process, the pre-cooling effect should be the primary consideration, and on this basis, the optimal solution should be derived through comparative analysis of the compressive strength of the packaging box. The optimization design ideas in this article can provide some reference and help for the design of other open-hole cartons.
关键词
开孔 /
预冷 /
抗压强度 /
苹果包装箱
Key words
opening /
pre-cooling /
compressive strength /
apple packaging box
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郝源童. 品种和采收成熟度对桃贮藏冷害发生的影响分析[D]. 杭州: 浙江大学, 2021: 4-6.
HAO Y T.Effects of Cultivar and Harvest Maturity on Postharvest Chilling Injury in Peach Fruit[D]. Hangzhou: Zhejiang University, 2021: 4-6.
[2] 王晓冉, 马笑巍, 刘岳, 等. 不同因素对国光苹果差压预冷效果的影响[J]. 食品科技, 2022, 47(12): 20-26.
WANG X R, MA X W, LIU Y, et al.Effects of Different Factors on Differential Pressure Pre-Cooling of Guoguang Apple[J]. Food Science and Technology, 2022, 47(12): 20-26.
[3] 焦旋, 高阳, 高振峰, 等. 压差预冷对油桃贮运品质及抗氧化性的影响[J]. 食品与发酵工业, 2020, 46(22): 173-179.
JIAO X, GAO Y, GAO Z F, et al.Improving Quality and Antioxidant Capacity of Nectarine by Forced-Air Precooling during Storage and Transportation[J]. Food and Fermentation Industries, 2020, 46(22): 173-179.
[4] 段愿. 预冷降温及转货架升温速度对减轻‘湖景蜜露’桃果实采后机械伤及品质劣变的研究[D]. 杭州: 浙江大学, 2020: 7-9.
DUAN Y.Study on the Effects of Temperature Changing Rates During Precooling and Transfer-to-shelf Treatments on Reducing Mechanical Damage and Quality Deterioration of ‘Hujingmilu’ Peach Fruit After Harvest[D]. Hangzhou: Zhejiang University, 2020: 7-9.
[5] 梁乃锋, 李萌, 陈意, 等. 荔枝物流保鲜的主要领域、技术应用及展望[J]. 物流工程与管理, 2024, 46(1): 45-47.
LIANG N F, LI M, CHEN Y, et al.The Main Fields, Technical Applications and Prospects of Lychee Logistics Preservation[J]. Logistics Engineering and Management, 2024, 46(1): 45-47.
[6] 宫亚芳, 曹玉会. 衬垫与箱壁间空隙对苹果预冷效果的影响[J]. 中国科学院大学学报, 2021, 38(2): 198-206.
GONG Y F, CAO Y H.Effect of the Gap Width between Tray and Box Wall on the Precooling Effectiveness of Apples[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(2): 198-206.
[7] 谌英敏, 王贺, 苏勤, 等. 基于GA-BPNN的采后蜜桃预冷效果预测模型[J]. 农业工程学报, 2021, 37(23): 264-272.
CHEN Y M, WANG H, SU Q, et al.Prediction Model of Post-Harvest Peach Pre-Cooling Effectiveness Based on GA-BPNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 264-272.
[8] WANG X F, FAN Z Y, LI B G, et al.Variable Air Supply Velocity of Forced-Air Precooling of Iceberg Lettuces: Optimal Cooling Strategies[J]. Applied Thermal Engineering, 2021, 187: 116484.
[9] NALBANDI H, SEIIEDLOU S.Sensitivity Analysis of the Precooling Process of Strawberry: Effect of Package Designing Parameters and the Moisture Loss[J]. Food Science & Nutrition, 2020, 8(5): 2458-2471.
[10] CHEN Y M, SONG H Y, CHEN Z S, et al.Sensitivity Analysis of Heat and Mass Transfer Characteristics during Forced-Air Cooling Process of Peaches on Different Air-Inflow Velocities[J]. Food Science & Nutrition, 2020, 8(12): 6592-6602.
[11] GONG Y F, CAO Y H, ZHANG X R.Forced-Air Precooling of Apples: Airflow Distribution and Precooling Effectiveness in Relation to the Gap Width between Tray Edge and Box Wall[J]. Postharvest Biology and Technology, 2021, 177: 111523.
[12] 朱文颖, 史策, 韩帅, 等. 基于CFD的苹果隔板包装预冷温度场研究[J]. 农业机械学报, 2019, 50(1): 331-338.
ZHU W Y, SHI C, HAN S, et al.Investigation on Pre-Cooling Temperature Field in Partition Packaging Based on CFD[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 331-338.
[13] 金滔, 李博, 朱宗升, 等. 苹果垂直送风式压差预冷性能模拟与分析[J]. 农业机械学报, 2021, 52(9): 369-375.
JIN T, LI B, ZHU Z S, et al.Simulation and Analysis of Forced-Air Precooling of Apples with Vertical Air Supply[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 369-375.
[14] 苏勤, 谌英敏, 柏惠康, 等. 基于计算流体力学的开孔均匀性对番茄预冷性能的影响[J]. 食品与发酵工业, 2020, 46(21): 167-172.
SU Q, CHEN Y M, BAI H K, et al.The Effect of CFD-Based Hole Uniformity on Tomato Precooling Performance[J]. Food and Fermentation Industries, 2020, 46(21): 167-172.
[15] 王达, 贾斌广, 杨相政, 等. 苹果双向交替送风压差预冷的数值模拟[J]. 食品科技, 2019, 44(2): 40-45.
WANG D, JIA B G, YANG X Z, et al.Numerical Simulation of Pressure Pre-Cooling for Alternating Ventilation of Apple[J]. Food Science and Technology, 2019, 44(2): 40-45.
[16] 谌英敏, 令狐博祥, 赵茗彰, 等. 基于计算流体力学的送风模式对层装蜜桃差压预冷效果的影响[J]. 食品科学, 2025, 46(7): 292-302.
CHEN Y M, LINGHU B X, ZHAO M Z, et al.Computational Fluid Dynamics Analysis of the Impacts of Air Supply Velocity Modes on the Differential Pressure Precooling Efficiency of Peaches Stored in Ventilated Packaging[J]. Food Science, 2025, 46(7): 292-302.
基金
河南牧业经济学院博士启动基金(2019HNUAHEDF021)