国内外食品接触用智能活性材料研究进展

胡清心, 陈彩霞, 丁晓, 陈蚕蚕, 李丹, 陈胜, 钟怀宁, 潘静静

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 106-117.

PDF(509 KB)
PDF(509 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 106-117. DOI: 10.19554/j.cnki.1001-3563.2025.17.012
先进材料

国内外食品接触用智能活性材料研究进展

  • 胡清心, 陈彩霞, 丁晓, 陈蚕蚕, 李丹, 陈胜, 钟怀宁, 潘静静*
作者信息 +

Research Progress of Smart Active Materials for Food Contact in China and Abroad

  • HU Qingxin, CHEN Caixia, DING Xiao, CHEN Cancan, LI Dan, CHEN Sheng, ZHONG Huaining, PAN Jingjing*
Author information +
文章历史 +

摘要

目的 国内外对食品接触用智能活性材料的研究日益广泛,本文旨在探讨智能活性材料的研究进展及目前法规监管情况,为推动智能活性材料的应用提供理论依据。方法 系统综述当前国内外食品接触用智能活性材料的研究进展,重点总结pH响应型、温度响应型等智能材料及制品和抗菌型、抗氧化型等活性材料及制品的研究进展。论述当前国内外食品接触用智能活性材料的法规监管现状,且进一步探讨食品接触用智能活性材料所面临的挑战与机遇。结论 当前食品接触用智能活性材料的研究取得了显著进展,智能活性材料能够有效监测食品状态,延长食品保质期。然而,在实际应用中面临着生产成本较高,安全性不确定等诸多挑战。未来,将对智能活性材料的安全性评估,简化生产工艺等方面展开系列研究,以实现其产业化应用。

Abstract

The work aims to discuss the research progress and current regulatory situation of smart active materials under the background that research on smart active materials is increasingly widespread both in China and abroad, so as to provide a theoretical basis for promoting the application of smart active material. This article systematically reviewed the current research progress of smart active materials for food contact both domestically and internationally, focusing on summarizing research advancements in pH-responsive, temperature-responsive smart materials, as well as antibacterial and antioxidant active materials and products. It discussed the current regulatory status of these smart active materials for food contact and further explored the challenges and opportunities they face. Currently, significant advancements have been made in the research of smart active materials for food contact, which can effectively monitor food status and extend its shelf life. However, in practical applications, there are numerous challenges such as high production costs and uncertain safety. In the future, a series of research will be conducted on the safety assessment of smart active materials and the simplification of production processes to achieve their industrial application.

关键词

食品包装 / 智能材料 / 活性材料

Key words

food packaging / smart materials / active materials

引用本文

导出引用
胡清心, 陈彩霞, 丁晓, 陈蚕蚕, 李丹, 陈胜, 钟怀宁, 潘静静. 国内外食品接触用智能活性材料研究进展[J]. 包装工程(技术栏目). 2025, 46(17): 106-117 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.012
HU Qingxin, CHEN Caixia, DING Xiao, CHEN Cancan, LI Dan, CHEN Sheng, ZHONG Huaining, PAN Jingjing. Research Progress of Smart Active Materials for Food Contact in China and Abroad[J]. Packaging Engineering. 2025, 46(17): 106-117 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.012
中图分类号: TB484   

参考文献

[1] 罗文震. 智能包装技术在食品包装设计中的应用[J]. 上海包装, 2025(1): 42-44.
LUO W Z.Application of Intelligent Packaging Technology in Food Packaging Design[J]. Shanghai Packaging, 2025(1): 42-44.
[2] 王凯利, 马健, 王登科, 等. 不同包装材料和包装形式对食品储藏特性的影响[J]. 河南工业大学学报(自然科学版), 2018, 39(5): 58-62.
WANG K L, MA J, WANG D K, et al.Effects of Packaging Material and Form on Food Storage Characteristics[J]. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(5): 58-62.
[3] VISCUSI G, BUGATTI V, VITTORIA V, et al.Antimicrobial Sorbate Anchored to Layered Double Hydroxide (LDH) Nano-Carrier Employed as Active Coating on Polypropylene (PP) Packaging: Application to Bread Stored at Ambient Temperature[J]. Future Foods, 2021, 4: 100063.
[4] 于松, 邹连蓬, 戴承兵, 等. 国内外活性食品接触材料的研究进展[J]. 中国食品卫生杂志, 2022, 34(6): 1375-1384.
YU S, ZOU L P, DAI C B, et al.Research Progress on Active Food Contact Materials at Home and Abroad[J]. Chinese Journal of Food Hygiene, 2022, 34(6): 1375-1384.
[5] NIKOLIC M V, VASILJEVIC Z Z, AUGER S, et al.Metal Oxide Nanoparticles for Safe Active and Intelligent Food Packaging[J]. Trends in Food Science & Technology, 2021, 116: 655-668.
[6] VILELA C, MOREIRINHA C, DOMINGUES E M, et al.Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging[J]. Nanomaterials, 2019, 9(7): 980.
[7] NEMES S A, SZABO K, VODNAR D C.Applicability of Agro-Industrial By-Products in Intelligent Food Packaging[J]. Coatings, 2020, 10(6): 550.
[8] MACLAREN D C, WHITE M A.Competition between Dye-Developer and Solvent-Developer Interactions in a Reversible Thermochromic System[J]. Journal of Materials Chemistry, 2003, 13(7): 1701-1704.
[9] SHARMA S, BARKAUSKAITE S, JAISWAL A K, et al.Essential Oils as Additives in Active Food Packaging[J]. Food Chemistry, 2021, 343: 128403.
[10] 刘文良, 马雪寒, 熊梅伶. 多维技术赋能易腐水果智能包装设计研究[J]. 包装工程, 2024, 45(5): 74-80.
LIU W L, MA X H, XIONG M L.Intelligent Packaging Design of Perishable Fruits Enabled by Multi-Dimensional Technology[J]. Packaging Engineering, 2024, 45(5): 74-80.
[11] 李家豪, 黄杨宇, 瞿润怡, 等. pH响应型智能食品包装材料的研究进展[J]. 塑料包装, 2024, 34(4): 1-8.
LI J H, HUANG Y Y, QU R Y, et al.Research Progress of PH-Responsive Intelligent Food Packaging Materials[J]. Plastics Packaging, 2024, 34(4): 1-8.
[12] ROY S, RHIM J W.Anthocyanin Food Colorant and Its Application in PH-Responsive Color Change Indicator Films[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(14): 2297-2325.
[13] PRAMESTHI R, SUPRAYOGI T, SUDJATMOGO S.Total Bakteria and Ph in Milk By Friesian Holstein Cows Milk Atpelaksana Teknis Daerah Dan Pembibitan Ternak Unggul Mulyorejo Tengaran-Semarang[J]. Animal Agriculture Journal, 2015, 4(1): 69-74.
[14] GUO C J, HE J L, SONG X, et al.Pharmacological Properties and Derivatives of Shikonin—A Review in Recent Years[J]. Pharmacological Research, 2019, 149: 104463.
[15] MUSTAFA P, NIAZI M B K, JAHAN Z, et al. PVA/Starch/Propolis/Anthocyanins Rosemary Extract Composite Films as Active and Intelligent Food Packaging Materials[J]. Journal of Food Safety, 2020, 40(1): e12725.
[16] SURIYATEM R, AURAS R A, RACHTANAPUN C, et al.Biodegradable Rice Starch/Carboxymethyl Chitosan Films with Added Propolis Extract for Potential Use as Active Food Packaging[J]. Polymers, 2018, 10(9): 954.
[17] ROY S, RHIM J W.Preparation of Gelatin/Carrageenan- Based Color-Indicator Film Integrated with Shikonin and Propolis for Smart Food Packaging Applications[J]. ACS Applied Bio Materials, 2021, 4(1): 770-779.
[18] GENGATHARAN A, DYKES G A, CHOO W S.Stability of Betacyanin from Red Pitahaya (Hylocereus Polyrhizus) and Its Potential Application as a Natural Colourant in Milk[J]. International Journal of Food Science & Technology, 2016, 51(2): 427-434.
[19] RAHIMAH S, MALINDA W, ZAIDA, et al. Betacyanin as Bioindicator Using Time-Temperature Integrator for Smart Packaging of Fresh Goat Milk[J]. The Scientific World Journal, 2020, 2020(1): 4303140.
[20] WELLS N, YUSUFU D, MILLS A.Colourimetric Plastic Film Indicator for the Detection of the Volatile Basic Nitrogen Compounds Associated with Fish Spoilage[J]. Talanta, 2019, 194: 830-836.
[21] HAN J, WENG X C, BI K S.Antioxidants from a Chinese Medicinal Herb - Lithospermum Erythrorhizon[J]. Food Chemistry, 2008, 106(1): 2-10.
[22] DONG H L, LING Z, ZHANG X, et al.Smart Colorimetric Sensing Films with High Mechanical Strength and Hydrophobic Properties for Visual Monitoring of Shrimp and Pork Freshness[J]. Sensors and Actuators B: Chemical, 2020, 309: 127752.
[23] EZATI P, BANG Y J, RHIM J W.Preparation of a Shikonin-Based PH-Sensitive Color Indicator for Monitoring the Freshness of Fish and Pork[J]. Food Chemistry, 2021, 337: 127995.
[24] NINGTYAS R, JAYARACHMAN M N, IMAM S, et al.The Use of Colour Indicator as a Smart Packaging for Monitoring Spoilage Fillet Catin Fish (Pangasius Sp.) in Room Temperature[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1177(1): 012048.
[25] MUSSO Y S, SALGADO P R, MAURI A N.Smart Edible Films Based on Gelatin and Curcumin[J]. Food Hydrocolloids, 2017, 66: 8-15.
[26] GRAJEDA-IGLESIAS C, SALAS E, BAROUH N, et al.Lipophilization and MS Characterization of the Main Anthocyanins Purified from Hibiscus Flowers[J]. Food Chemistry, 2017, 230: 189-194.
[27] ERSUS BILEK S, YıLMAZ F M, ÖZKAN G. The Effects of Industrial Production on Black Carrot Concentrate Quality and Encapsulation of Anthocyanins in Whey Protein Hydrogels[J]. Food and Bioproducts Processing, 2017, 102: 72-80.
[28] 梁旭茹, 岳淑丽, 张硕, 等. 响应型食品包装的研究现状及前景展望[J]. 现代食品科技, 2025, 41(1): 370-380.
LIANG X R, YUE S L, ZHANG S, et al.Research Status and Prospects of Responsive Food Packaging[J]. Modern Food Science and Technology, 2025, 41(1): 370-380.
[29] 李锦. 易腐食品冷藏运输温度调控及优化研究[D]. 长沙: 中南大学, 2013.
LI J.Study on temperature regulation and optimization of refrigerated transport for perishable foods[D]. Changsha: Central South University, 2013.
[30] KIM D, THANAKKASARANEE S, LEE K, et al.Smart Packaging with Temperature-Dependent Gas Permeability Maintains the Quality of Cherry Tomatoes[J]. Food Bioscience, 2021, 41: 100997.
[31] THANAKKASARANEE S, SEO J.Effect of Halloysite Nanotubes on Shape Stabilities of Polyethylene Glycol-Based Composite Phase Change Materials[J]. International Journal of Heat and Mass Transfer, 2019, 132: 154-161.
[32] SINGH S, GAIKWAD K K, LEE M, et al.Temperature Sensitive Smart Packaging for Monitoring the Shelf Life of Fresh Beef[J]. Journal of Food Engineering, 2018, 234: 41-49.
[33] KIM Y H, PARK C W, KIM J S, et al.Smart Packaging Temperature Indicator Based on Encapsulated Thermochromic Material for the Optimal Watermelon Taste[J]. Journal of Food Measurement and Characterization, 2022, 16(3): 2347-2355.
[34] ZHANG W M, LIU R, SUN X L, et al.Leaf-Stomata- Inspired Packaging Nanofibers with Humidity-Triggered Thymol Release Based on Thymol/EVOH Coaxial Electrospinning[J]. Food Research International, 2022, 162: 112093.
[35] NIAN L Y, WANG M J, WANG F F, et al.Multifunctional Material Cer@MHKUST-1 with Efficient Preservation Capability[J]. Chemical Engineering Journal, 2022, 433: 133267.
[36] SIROUSAZAR M, KHODAMORADI P.Freeze-Thawed Humic Acid/Polyvinyl Alcohol Supramolecular Hydrogels[J]. Materials Today Communications, 2020, 22: 100719.
[37] LEBEDEV V, MIROSHNICHENKO D, VYTRYKUSH N, et al.Novel Biodegradable Polymers Modified by Humic Acids[J]. Materials Chemistry and Physics, 2024, 313: 128778.
[38] DONG H, HAN S, MI K Q, et al.Asymmetric Janus Composite Films with Superior Humidity Regulation Capabilities for the Efficient Preservation of Strawberry Fruit[J]. Food Chemistry, 2025, 478: 143646.
[39] SÄNGERLAUB S, SEIBEL K, MIESBAUER O, et al. Functional Properties of Foamed and/or Stretched Polypropylene-Films Containing Sodium Chloride Particles for Humidity Regulation[J]. Polymer Testing, 2018, 65: 339-351.
[40] SÄNGERLAUB S, MIESBAUER O, MICHAEL L, et al. Humidity Regulation by Stretched PP and PLA Films with Dispersed CaCl2[J]. Journal of Applied Polymer Science, 2018, 135(3): 45713.
[41] TOMASULA P M.Using Dairy Ingredients to Produce Edible Films and Biodegradable Packaging Materials[M]. Amsterdam: Dairy-Derived Ingredients, 2009: 589-624.
[42] BONNAILLIE L M, TOMASULA P M.Application of Humidity-Controlled Dynamic Mechanical Analysis (DMA-RH) to Moisture-Sensitive Edible Casein Films for Use in Food Packaging[J]. Polymers, 2015, 7(1): 91-114.
[43] 邹艺源. 基于肉桂醛/环糊精包合物的淀粉基膜的制备及表征[D]. 济南: 齐鲁工业大学, 2021.
ZOU Y Y.Preparation and Characterization of Starchbased Film Containing Cinnamaldehyde/Cyclodextrin Complex[D]. Jinan: Qilu University of Technology, 2021.
[44] 潘港. 温度和添加剂对青贮硝酸盐降解及其微生物群落特征的影响[D]. 沈阳: 沈阳农业大学, 2022.
PAN G.Effects of Temperature and Additives on Nitrate Degradation and Microbial Community Characteristics of Silage[D]. Shenyang: Shenyang Agricultural University, 2022.
[45] 刘馨心. 基于花色苷活性智能食品包装材料的制备与表征[D]. 昆明: 云南民族大学, 2023.
LIU X X.Preparation and Characterization of Intelligent Food Packaging Materials Based on Anthocyanin Activity[D]. Kunming: Yunnan University of Nationalities, 2023.
[46] EC. Commission Regulation (EC) No 450/2009 of 29 May 2009 on Active and Intelligent Materials and Articles Intended to Come into Contact with Food[S]. Official Journal of the European Union, 2009: 135-137
[47] CINDI M D, SOUNDY P, ROMANAZZI G, et al.Different Defense Responses and Brown Rot Control in Two Prunus Persica Cultivars to Essential Oil Vapours after Storage[J]. Postharvest Biology and Technology, 2016, 119: 9-17.
[48] ESQUIVEL-CHÁVEZ F, COLÍN-CHÁVEZ C, VIRGEN- ORTIZ J J, et al. Control of Mango Decay Using Antifungal Sachets Containing of Thyme Oil/Modified Starch/Agave Fructans Microcapsules[J]. Future Foods, 2021, 3: 100008.
[49] GONÇALVES M L L, SANTOS E M, RENNO A C M, et al. Erythrosine as a Photosensitizer for Antimicrobial Photodynamic Therapy with Blue Light-Emitting Diodes - an in Vitro Study[J]. Photodiagnosis and Photodynamic Therapy, 2021, 35: 102445.
[50] WANG B, YAN S X, GAO W, et al.Antibacterial Activity, Optical, and Functional Properties of Corn Starch- Based Films Impregnated with Bamboo Leaf Volatile Oil[J]. Food Chemistry, 2021, 357: 129743.
[51] ZHU S Y, UKWATTA R H, CAI X R, et al.The Physiochemical and Photodynamic Inactivation Properties of Corn Starch/Erythrosine B Composite Film and Its Application on Pork Preservation[J]. International Journal of Biological Macromolecules, 2023, 225: 112-122.
[52] PEI J L, ZHU S Y, LIU Y, et al.Photodynamic Effect of Riboflavin on Chitosan Coatings and the Application in Pork Preservation[J]. Molecules, 2022, 27(4): 1355.
[53] FRANCIUS G, CERVULLE M, CLÉMENT E, et al. Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity[J]. ACS Applied Bio Materials, 2021, 4(3): 2614-2627.
[54] ZANET V, VIDIC J, AUGER S, et al.Activity Evaluation of Pure and Doped Zinc Oxide Nanoparticles Against Bacterial Pathogens and Saccharomyces Cerevisiae[J]. Journal of Applied Microbiology, 2019, 127(5): 1391-1402.
[55] MATHEW S, S S, MATHEW J, et al. Biodegradable and Active Nanocomposite Pouches Reinforced with Silver Nanoparticles for Improved Packaging of Chicken Sausages[J]. Food Packaging and Shelf Life, 2019, 19: 155-166.
[56] CHOWDHURY S, TEOH Y L, ONG K M, et al.Poly(Vinyl) Alcohol Crosslinked Composite Packaging Film Containing Gold Nanoparticles on Shelf Life Extension of Banana[J]. Food Packaging and Shelf Life, 2020, 24: 100463.
[57] KUMAR J, AKHILA K, GAIKWAD K K.Recent Developments in Intelligent Packaging Systems for Food Processing Industry: A Review[J]. J Food Proctechnol, 2021, 12: 895.
[58] ZHANG W L, JIANG H T, RHIM J W, et al.Effective Strategies of Sustained Release and Retention Enhancement of Essential Oils in Active Food Packaging Films/Coatings[J]. Food Chemistry, 2022, 367: 130671.
[59] FU Y, CHEN J, LI Y J, et al.Antioxidant and Anti-Inflammatory Activities of Six Flavonoids Separated from Licorice[J]. Food Chemistry, 2013, 141(2): 1063-1071.
[60] HAN Y Y, YU M, WANG L J.Preparation and Characterization of Antioxidant Soy Protein Isolate Films Incorporating Licorice Residue Extract[J]. Food Hydrocolloids, 2018, 75: 13-21.
[61] KHALID THEBO N, AHMED SIMAIR A, SUGHRA MANGRIO G, et al.Antifungal Potential and Antioxidant Efficacy in the Shell Extract of Cocos Nucifera (L.) (Arecaceae) Against Pathogenic Dermal Mycosis[J]. Medicines, 2016, 3(2): 12.
[62] TANWAR R, GUPTA V, KUMAR P, et al.Development and Characterization of PVA-Starch Incorporated with Coconut Shell Extract and Sepiolite Clay as an Antioxidant Film for Active Food Packaging Applications[J]. International Journal of Biological Macromolecules, 2021, 185: 451-461.
[63] ALIM A, LI T, NISAR T, et al.Antioxidant, Antimicrobial, and Antiproliferative Activity-Based Comparative Study of Peel and Flesh Polyphenols from Actinidia chinensis[J]. Food & Nutrition Research, 2019, 63: 63.
[64] HAN H S, BIN SONG K.Antioxidant Properties of Watermelon (Citrullus Lanatus) Rind Pectin Films Containing Kiwifruit (Actinidia Chinensis) Peel Extract and Their Application as Chicken Thigh Packaging[J]. Food Packaging and Shelf Life, 2021, 28: 100636.
[65] APARICIO-FERNÁNDEZ X, VEGA-AHUATZIN A, OCHOA-VELASCO C E, et al. Physical and Antioxidant Characterization of Edible Films Added with Red Prickly Pear (Opuntia Ficus-Indica L.) Cv. San Martín Peel and/or Its Aqueous Extracts[J]. Food and Bioprocess Technology, 2018, 11(2): 368-379.
[66] CEJUDO-BASTANTE M J, CEJUDO-BASTANTE C, CRAN M J, et al. Optical, Structural, Mechanical and Thermal Characterization of Antioxidant Ethylene Vinyl Alcohol Copolymer Films Containing Betalain-Rich Beetroot[J]. Food Packaging and Shelf Life, 2020, 24: 100502.
[67] RAMBABU K, BHARATH G, BANAT F, et al.Mango Leaf Extract Incorporated Chitosan Antioxidant Film for Active Food Packaging[J]. International Journal of Biological Macromolecules, 2019, 126: 1234-1243.
[68] LLOYD K, MIROSA M, BIRCH J.Active and Intelligent Packaging[M]. Amsterdam: Encyclopedia of Food Chemistry, 2019: 177-182.
[69] CHENG H, XU H, JULIAN MCCLEMENTS D, et al.Recent Advances in Intelligent Food Packaging Materials: Principles, Preparation and Applications[J]. Food Chemistry, 2022, 375: 131738.
[70] LUZI F, PANNUCCI E, SANTI L, et al.Gallic Acid and Quercetin as Intelligent and Active Ingredients in Poly(vinyl alcohol) Films for Food Packaging[J]. Polymers, 2019, 11(12): 1999.
[71] AMIN U, KHAN M K I, MAAN A A, et al. Biodegradable Active, Intelligent, and Smart Packaging Materials for Food Applications[J]. Food Packaging and Shelf Life, 2022, 33: 100903.
[72] CHEN L, ZOU M, HONG F F.Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose[J]. Frontiers in Microbiology, 2015, 6: 1245.
[73] GAIKWAD K K, SINGH S, LEE Y S.A Pyrogallol-Coated Modified LDPE Film as an Oxygen Scavenging Film for Active Packaging Materials[J]. Progress in Organic Coatings, 2017, 111: 186-195.
[74] DI GIUSEPPE F, COFFIGNIEZ F, AOUF C, et al.Activated Gallic Acid as Radical and Oxygen Scavenger in Biodegradable Packaging Film[J]. Food Packaging and Shelf Life, 2022, 31: 100811.
[75] 中华人民共和国广东出入境检验检疫局中华人民共和国宁波出入境检验检疫局. 食品接触材料检验规程. 活性及智能材料类: SN/T 2196—2008[S]. 北京:国家质量监督检验检疫总局, 2008.
Guangdong Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China Ningbo Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China. Inspection Procedures for Food Contact Materials. Active and Smart Materials: SN/T 2196-2008[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2008.
[76] European Food Safety Authority. Administrative Guidance for the Preparation of Applications on Substances to Be Used in Active and Intelligent Materials and Articles Intended to Come into Contact with Food[J]. EFSA Supporting Publications, 2021, 18(3): 6513E.
[77] Federal Department of Home Affairs. Regulation on Materials and Articles Intended to Come into Contact with Foodstuffs: SR 817.023.21[S]. Switzerland, 2024: 17.
[78] Ministry of Food and Drug Safety. Standards and Specifications for Utensils, Containers and Packages[S]. Korea, 2024: 11.
[79] BFR. XXXVI/3 Absorber Pads Based on Cellulosic Fibres for Food Packaging[S]. Germany, 2020.
[80] WU C H, SUN J S, ZHENG P Y, et al.Preparation of an Intelligent Film Based on Chitosan/Oxidized Chitin Nanocrystals Incorporating Black Rice Bran Anthocyanins for Seafood Spoilage Monitoring[J]. Carbohydrate Polymers, 2019, 222: 115006.
[81] 曹瑜, 钟泽辉, 唐聪. 食品接触材料中有害物质迁移的研究进展[J]. 包装工程, 2023, 44(15): 112-121.
CAO Y, ZHONG Z H, TANG C.Research Progress on the Migration of Harmful Substances in Food Contact Materials[J]. Packaging Engineering, 2023, 44(15): 112-121.
[82] MERZ B, CAPELLO C, LEANDRO G C, et al.A Novel Colorimetric Indicator Film Based on Chitosan, Polyvinyl Alcohol and Anthocyanins from Jambolan (Syzygium Cumini) Fruit for Monitoring Shrimp Freshness[J]. International Journal of Biological Macromolecules, 2020, 153: 625-632.
[83] KADIRVEL V, PALANISAMY Y, GANESAN N D.Active Packaging System—An Overview of Recent Advances for Enhanced Food Quality and Safety[J]. Packaging Technology and Science, 2025, 38(2): 145-162.
[84] VO T V, DANG T H, CHEN B H.Synthesis of Intelligent pH Indicative Films from Chitosan/Poly(Vinyl Alcohol)/Anthocyanin Extracted from Red Cabbage[J]. Polymers, 2019, 11(7): 1088.

基金

国家重点研发计划项目(2022YFF0607202)

PDF(509 KB)

Accesses

Citation

Detail

段落导航
相关文章

/