电磁复合材料斜入射等效电磁参数测试技术研究

张云鹏, 朱香宝, 叶金平, 王小璐

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 80-88.

PDF(2825 KB)
PDF(2825 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 80-88. DOI: 10.19554/j.cnki.1001-3563.2025.17.009
轻质宽频电磁复合材料

电磁复合材料斜入射等效电磁参数测试技术研究

  • 张云鹏*, 朱香宝, 叶金平, 王小璐
作者信息 +

Measurement Technology of Equivalent Electromagnetic Parameters of Electromagnetic Composites at Oblique Incidence

  • ZHANG Yunpeng*, ZHU Xiangbao, YE Jinping, WANG Xiaolu
Author information +
文章历史 +

摘要

目的 为实现对电磁复合材料在平面电磁波斜入射下的电磁特性进行分析与优化,提出一种测量斜入射下电磁复合材料等效电磁参数的方法。方法 引入入射角参数构建斜入射下等效电磁参数反演算法,并利用金属板和空气的传输-反射校准技术实现斜入射下散射参数的精确测量。结果 搭建了一套8~12 GH测试系统,对蜂窝等材料的等效电磁参数进行了测试;基于测试值对其反射率进行了计算并与弓形法测试结果进行比对,两者偏差在0.5 dB以内,表明该方法具有良好的准确性。结论 本研究为电磁复合材料的电磁性能评价提供了一种有效测试方案,简化了复杂结构的仿真建模与设计。

Abstract

The work aims to propose a method for measuring the equivalent electromagnetic parameters of electromagnetic composites under oblique incidence, so as to analyze and optimize the electromagnetic characteristics of electromagnetic composites under oblique incidence of plane electromagnetic waves. An incident angle parameter was introduced to develop an inversion algorithm for obtaining equivalent electromagnetic parameters at oblique incidence. Scattering parameters at oblique incidence were tested accurately using the transmission-reflection calibration technique, where a metal plate and air were used. An 8-12 GHz test system was constructed to measure equivalent electromagnetic parameters of typical materials, such as a honeycomb. The reflectivity was calculated based on the test data and compared with arch-method test results; The deviation between the two was less than 0.5 dB, indicating high accuracy of this method. This work provides an efficient testing solution for evaluating electromagnetic properties of electromagnetic composites; it also greatly simplifies the simulation modeling and design of complex structures.

关键词

电磁复合材料 / 等效电磁参数 / 斜入射

Key words

electromagnetic composites / equivalent electromagnetic parameters / oblique incidence

引用本文

导出引用
张云鹏, 朱香宝, 叶金平, 王小璐. 电磁复合材料斜入射等效电磁参数测试技术研究[J]. 包装工程(技术栏目). 2025, 46(17): 80-88 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.009
ZHANG Yunpeng, ZHU Xiangbao, YE Jinping, WANG Xiaolu. Measurement Technology of Equivalent Electromagnetic Parameters of Electromagnetic Composites at Oblique Incidence[J]. Packaging Engineering. 2025, 46(17): 80-88 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.009
中图分类号: TB33   

参考文献

[1] 黄凌龙, 包贵浩. 民用飞机复合材料结构的电磁屏蔽设计研究[J]. 科学技术创新, 2025(14): 75-78.
HUANG L L, BAO G H.Research on Electromagnetic Shielding Design of Composite Structures for Civil Aircraft[J]. Scientific and Technological Innovation, 2025(14): 75-78.
[2] KHURRAM A A, ALI N, RAKHA S A, et al.Optimization of the Carbon Coating of Honeycomb Cores for Broadband Microwave Absorption[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1061-1066.
[3] 冯雁, 郑锡涛, 吴淑一, 等. 轻型复合材料机翼铺层优化设计与分析[J]. 航空学报, 2015, 36(6): 1858-1866.
FENG Y, ZHENG X T, WU S Y, et al.Layup Optimization Design and Analysis of Super Lightweight Composite Wing[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1858-1866.
[4] LI J X, ZENG Q S, LIU R Z, et al.Beam-Tilting Antenna with Negative Refractive Index Metamaterial Loading[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2030-2033.
[5] 顾兆栴, 陈乐, 孙惠敏, 等. 蜂窝结构吸波材料等效电磁参数与吸波性能[C]// 2023年全国天线年会论文集. 哈尔滨, 2023: 568-570.
[6] TRABELSI S, NELSON S O.Microwave Sensing of Quality Attributes of Agricultural and Food Products[J]. IEEE Instrumentation & Measurement Magazine, 2016, 19(1): 36-41.
[7] HASAR H, HASAR U C, KAYA Y, et al.Prediction of Water-Adulteration within Honey by Air-Line De-Embedding Waveguide Measurements[J]. Measurement, 2021, 179: 109469.
[8] ANSARI M A H, JHA A K, AKHTAR M J. Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity[J]. IEEE Sensors Journal, 2015, 15(12): 7181-7189.
[9] ROELVINK J, TRABELSI S, NELSON S O.A Planar Transmission-Line Sensor for Measuring the Microwave Permittivity of Liquid and Semisolid Biological Materials[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(11): 2974-2982.
[10] 黄丘林, 刘丹, 曹如洁, 等. 一种改进的液体电磁参数自由空间测量方法[J/OL]. 微波学报: 1-7[2025-09-04]. https://doi.org/10.14183/j.cnki.1005-6122.JMW25020.
HUANG Q L, LIU D, CAO R J, et al. An Improved Free-space Method for Measuring Electromagnetic Parameters of Liquids[J]. Journal of Microwares: 1-7[2025-09-04]. https://doi.org/10.14183/j.cnki.1005-6122.JMW25020.
[11] MOSAVIRIK T, SOLEIMANI M, NAYYERI V, et al.Permittivity Characterization of Dispersive Materials Using Power Measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6005508.
[12] 杨志良, 江禹, 李元浩, 等. 基于波导传输线的电磁参数测试校准方法[J]. 电子测量技术, 2022, 45(4): 179-184.
YANG Z L, JIANG Y, LI Y H, et al.Measurement and Calibration Method of Electromagnetic Parameters Based on Waveguide Transmission Line[J]. Electronic Measurement Technology, 2022, 45(4): 179-184.
[13] XIANG Z, WU J B, QI C, et al.Contactless Detection of Moisture Content in Blended Fabrics with a Free-Space Microwave Method[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(5): 2139-2144.
[14] HASAR U C, KAYA Y, OZTURK G, et al.Broadband, Stable, and Noniterative Dielectric Constant Measurement of Low-Loss Dielectric Slabs Using a Frequency-Domain Free-Space Method[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 12435-12439.
[15] HASAR U C, KAYA Y, OZTURK H, et al.Improved Method for Permittivity Determination of Dielectric Samples by Free-Space Measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6002108.
[16] SHWAYKANI H, COSTANTINE J, EL-HAJJ A, et al.Monostatic Free-Space Method for Relative Permittivity Determination Using Horn Antenna Near-Field Measurements[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(4): 1336-1340.
[17] ZARGHOONI B, DADGARPOUR A, DENIDNI T A.Paraffin Wax-Based Dielectric Lens for Metamaterial Measurement in the S-Band[J]. IET Microwaves, Antennas & Propagation, 2016, 10(8): 891-896.
[18] CHEN X D, GRZEGORCZYK T M, WU B I, et al.Robust Method to Retrieve the Constitutive Effective Parameters of Metamaterials[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(1 Pt 2): 016608.
[19] SON D S, HYUN J M, CHAKI S, et al.Evaluation of Mechanical/Electromagnetic Preformation of Single-Sided Active Frequency Selective Surface for Stealth Radomes[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(5): 1235-1242.
[20] WANG Y, LIU Y Y, LIAO X, et al.Measured Reflection and Transmission Properties of Building Materials for Indoor THz Communication[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(6): 1361-1365.
[21] GHODGAONKAR D K, VARADAN V V, VARADAN V K.A Free-Space Method for Measurement of Dielectric Constants and Loss Tangents at Microwave Frequencies[J]. IEEE Transactions on Instrumentation and Measurement, 1989, 38(3): 789-793.
[22] SHI Y, HAO T, LI L, et al.An Improved NRW Method to Extract Electromagnetic Parameters of Metamaterials[J]. Microwave and Optical Technology Letters, 2016, 58(3): 647-652.

基金

国家自然科学基金(62201130)

PDF(2825 KB)

Accesses

Citation

Detail

段落导航
相关文章

/