聚合物绿色电磁屏蔽复合材料结构性能设计研究进展

王壮壮, 李佳宇, 琚璇, 杨雅琦, 段宏基

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 30-42.

PDF(9329 KB)
PDF(9329 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 30-42. DOI: 10.19554/j.cnki.1001-3563.2025.17.004
轻质宽频电磁复合材料

聚合物绿色电磁屏蔽复合材料结构性能设计研究进展

  • 王壮壮, 李佳宇, 琚璇, 杨雅琦, 段宏基*
作者信息 +

Research Progress on Structural and Performance Design of Polymer Green Electromagnetic Shielding Composites

  • WANG Zhuangzhuang, LI Jiayu, JU Xuan, YANG Yaqi, DUAN Hongji*
Author information +
文章历史 +

摘要

目的 综述当前绿色电磁屏蔽导电聚合物复合材料(Conductive polymer composites,CPCs)的最新研究进展,为设计制备以吸收机制为主导的绿色电磁屏蔽复合材料提供参考。方法 厘清绿色电磁屏蔽材料的意义及其与吸波材料的异同,阐明各自在性能测试原理及评估方法上的差别,综述高性能绿色电磁屏蔽CPCs最新的结构设计策略、成型加工方法及其屏蔽性能调控机理,讨论并展望绿色电磁屏蔽CPCs的设计发展方向。结论 发展可在高性能聚合物基体中大规模构筑可控电磁梯度网络的成型制备方法,实现CPCs电磁屏蔽材料超高效屏蔽性能,长效的稳定性、良好的复杂环境适应性与多功能性,以及动态可调的电磁响应特征,是推进CPCs绿色电磁屏蔽材料在下一代智能电子设备安全、可靠、绿色电磁防护中应用的重要研究发展方向。

Abstract

The work aims to systematically summarize the recent advances of green EMI shielding conductive polymer composites (CPCs) to provide references for design and prepare absorption-dominated green EMI shielding CPCs. The significance of green EMI shielding materials and their similarities and differences with absorbing materials were clarified. The differences in performance testing principles and evaluation methods between them were expounded. The latest structural design strategies, forming processing methods and shielding performance regulation mechanisms of high-performance green EMI shielding CPCs were reviewed. The design and development directions of green EMI shielding CPCs were discussed and prospected. The development of the large-scale preparation method for construction of controllable electromagnetic gradient networks in high-performance polymer matrices is vital for the design of high-performance green EMI shielding CPCs, and it is expected that green EMI shielding CPCs with high efficiency and long-term durability, favorable environmental adaptability as well as multifunctionality and dynamic regulation of EM parameters will eventually be widely used in the EM compatibility and protection of the next-generation electronic devices.

关键词

绿色电磁屏蔽 / 导电聚合物复合材料(CPCs) / 低反射 / 结构设计策略 / 性能调控

Key words

green electromagnetic interference shielding / conductive polymer composites (CPCs) / low reflection / structural design principles / performance regulation

引用本文

导出引用
王壮壮, 李佳宇, 琚璇, 杨雅琦, 段宏基. 聚合物绿色电磁屏蔽复合材料结构性能设计研究进展[J]. 包装工程(技术栏目). 2025, 46(17): 30-42 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.004
WANG Zhuangzhuang, LI Jiayu, JU Xuan, YANG Yaqi, DUAN Hongji. Research Progress on Structural and Performance Design of Polymer Green Electromagnetic Shielding Composites[J]. Packaging Engineering. 2025, 46(17): 30-42 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.004
中图分类号: TB34   

参考文献

[1] 吴金津, 戴忠晨, 方振卫, 等. 电磁波吸收超材料的研究进展[J]. 包装工程, 2024, 45(23): 72-90.
WU J J, DAI Z C, FANG Z W, et al.Research Progress of Electromagnetic Wave Absorbing Metamaterials[J]. Packaging Engineering, 2024, 45(23): 72-90.
[2] XU Y D, LIN Z Q, RAJAVEL K, et al.Tailorable, Lightweight and Superelastic Liquid Metal Monoliths for Multifunctional Electromagnetic Interference Shielding[J]. Nano-Micro Letters, 2021, 14(1): 29.
[3] 覃仁驰, 孟凡彬. 羰基铁粉作为微波吸收材料的研究进展[J]. 包装工程, 2023, 44(9): 129-136.
QIN R C, MENG F B.Research Progress of Carbonyl Iron Powder as Microwave Absorbing Material[J]. Packaging Engineering, 2023, 44(9): 129-136.
[4] WU Z Q, DONG J, LI X T, et al.Interlayer Decoration of Expanded Graphite by Polyimide Resins for Preparing Highly Thermally Conductive Composites with Superior Electromagnetic Shielding Performance[J]. Carbon, 2022, 198: 1-10.
[5] 韩明睿, 郑司南, 李宾, 等. 可用于包装的纤维素基电磁屏蔽材料研究进展[J]. 包装工程, 2022, 43(23): 9-17.
HAN M R, ZHENG S N, LI B, et al.Research Progress on Cellulose-Based Electromagnetic Interference Shielding Materials for Packaging[J]. Packaging Engineering, 2022, 43(23): 9-17.
[6] WANG X X, ZHENG Q, ZHENG Y J, et al.Green EMI Shielding: Dielectric/Magnetic “Genes” and Design Philosophy[J]. Carbon, 2023, 206: 124-141.
[7] DUAN H J, ZHU H X, GAO J F, et al.Asymmetric Conductive Polymer Composite Foam for Absorption Dominated Ultra-Efficient Electromagnetic Interference Shielding with Extremely Low Reflection Characteristics[J]. Journal of Materials Chemistry A, 2020, 8(18): 9146-9159.
[8] ZHONG X, HE M K, ZHANG C Y, et al.Heterostructured BN@Co-C@C Endowing Polyester Composites Excellent Thermal Conductivity and Microwave Absorption at C Band[J]. Advanced Functional Materials, 2024, 34(19): 2313544.
[9] YANG J M, WANG H, ZHANG Y L, et al.Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding[J]. Nano-Micro Letters, 2023, 16(1): 31.
[10] YANG Y Q, BI R Z, REN W, et al.Oriented rGO Framework Induced hBN Confined Network in PDMS for Absorption Enhanced EMI Shielding and Through-Plane Thermal Conductivity[J]. Composites Science and Technology, 2023, 243: 110259.
[11] REN W, YANG Y Q, YANG J, et al.Multifunctional and Corrosion Resistant Poly(phenylene sulfide)/Ag Composites for Electromagnetic Interference Shielding[J]. Chemical Engineering Journal, 2021, 415: 129052.
[12] ZHAO B, YAN Z K, LIU L L, et al.A Liquid-Metal-Assisted Competitive Galvanic Reaction Strategy Toward Indium/Oxide Core-Shell Nanoparticles with Enhanced Microwave Absorption[J]. Advanced Functional Materials, 2024, 34(18): 2314008.
[13] DU Y Q, YAN Z K, YOU W B, et al.Balancing MXene Surface Termination and Interlayer Spacing Enables Superior Microwave Absorption[J]. Advanced Functional Materials, 2023, 33(34): 2301449.
[14] SUN H, CHE R C, YOU X, et al.Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities[J]. Advanced Materials, 2014, 26(48): 8120-8125.
[15] LIU Q H, CAO Q, BI H, et al.CoNi@SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption[J]. Advanced Materials, 2016, 28(3): 486-490.
[16] CHE R C, PENG L M, DUAN X F, et al.Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes[J]. Advanced Materials, 2004, 16(5): 401-405.
[17] JIA Z R, WANG C, FENG A L, et al.A Low-Dielectric Decoration Strategy to Achieve Absorption Dominated Electromagnetic Shielding Material[J]. Composites Part B: Engineering, 2020, 183: 107690.
[18] LI M Y, FENG Y J, WANG J.Asymmetric Conductive Structure Design for Stabilized Composites with Absorption Dominated Ultra-Efficient Electromagnetic Interference Shielding Performance[J]. Composites Science and Technology, 2023, 236: 110006.
[19] ZHANG Y L, RUAN K P, GU J W.Flexible Sandwich-Structured Electromagnetic Interference Shielding Nanocomposite Films with Excellent Thermal Conductivities[J]. Small, 2021, 17(42): 2101951.
[20] WU X Y, TU T X, DAI Y, et al.Direct Ink Writing of Highly Conductive MXene Frames for Tunable Electromagnetic Interference Shielding and Electromagnetic Wave-Induced Thermochromism[J]. Nano-Micro Letters, 2021, 13(1): 148.
[21] JIA X C, LI Y, SHEN B, et al.Evaluation, Fabrication and Dynamic Performance Regulation of Green EMI-Shielding Materials with Low Reflectivity: A Review[J]. Composites Part B: Engineering, 2022, 233: 109652.
[22] XU Y D, YANG Y Q, YAN D X, et al.Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 19143-19152.
[23] XU Y D, LIN Z Q, YANG Y Q, et al.Integration of Efficient Microwave Absorption and Shielding in a Multistage Composite Foam with Progressive Conductivity Modular Design[J]. Materials Horizons, 2022, 9(2): 708-719.
[24] CHAKRADHARY V K, JUNEJA S, JALEEL AKHTAR M.Correlation between EMI Shielding and Reflection Loss Mechanism for Carbon Nanofiber/Epoxy Nanocomposite[J]. Materials Today Communications, 2020, 25: 101386.
[25] LI T, LI J Z, XU Z K, et al.Electromagnetic Response of Multistage-Helical Nano-Micro Conducting Polymer Structures and Their Enhanced Attenuation Mechanism of Multiscale-Chiral Synergistic Effect[J]. Small, 2023, 19(21): 2300233.
[26] WANG M L, ZHANG S, ZHOU Z H, et al.Facile Heteroatom Doping of Biomass-Derived Carbon Aerogels with Hierarchically Porous Architecture and Hybrid Conductive Network: Towards High Electromagnetic Interference Shielding Effectiveness and High Absorption Coefficient[J]. Composites Part B: Engineering, 2021, 224: 109175.
[27] WANG J C, XIANG C S, LIU Q, et al.Ordered Mesoporous Carbon/Fused Silica Composites[J]. Advanced Functional Materials, 2008, 18(19): 2995-3002.
[28] LIANG C B, GU Z J, ZHANG Y L, et al.Structural Design Strategies of Polymer Matrix Composites for Electromagnetic Interference Shielding: A Review[J]. Nano-Micro Letters, 2021, 13(1): 181.
[29] DUAN H J, HE P Y, ZHU H X, et al.Constructing 3D Carbon-Metal Hybrid Conductive Network in Polymer for Ultra-Efficient Electromagnetic Interference Shielding[J]. Composites Part B: Engineering, 2021, 212: 108690.
[30] QIU J F, PENG C Y, WANG R C, et al.One-Step In-Situ Preparation of C/TiO2@rGO Aerogel Derived from Ti3C2Tx MXene for Integrating Microwave Absorption, Electromagnetic Interference Shielding and Catalytic Degradation of Antibiotics[J]. Carbon, 2024, 217: 118610.
[31] TAHALYANI J, AKHTAR M J, KAR K K. Flexible, Stretchable,Thin Films Based on Functionalized Carbon Nanofiber/Graphene Nanostructures for Electromagnetic Interference Shielding[J]. ACS Applied Nano Materials, 2023, 6(10): 8178-8191.
[32] ZONG Z, REN P G, GUO Z Z, et al.Synergistic Effect of 2D TiC and 1D CNT towards Absorption-Dominant High-Performance Electromagnetic Interference Shielding in 3D Macroporous Carbon Aerogel[J]. Carbon, 2022, 197: 40-51.
[33] FEI Y, LIANG M, ZHOU T, et al.Unique Carbon Nanofiber@Co/C Aerogel Derived Bacterial Cellulose Embedded Zeolitic Imidazolate Frameworks for High-Performance Electromagnetic Interference Shielding[J]. Carbon, 2020, 167: 575-584.
[34] ZONG Z, REN P G, GUO Z Z, et al.Three-Dimensional Macroporous Hybrid Carbon Aerogel with Heterogeneous Structure Derived from MXene/Cellulose Aerogel for Absorption-Dominant Electromagnetic Interference Shielding and Excellent Thermal Insulation Performance[J]. Journal of Colloid and Interface Science, 2022, 619: 96-105.
[35] FANG H M, GUO H C, HU Y R, et al.In-Situ Grown Hollow Fe3O4 Onto Graphene Foam Nanocomposites with High EMI Shielding Effectiveness and Thermal Conductivity[J]. Composites Science and Technology, 2020, 188: 107975.
[36] FANG M, HUANG L Y, CUI Z R, et al.Phase-Transition Microcapacitor Network in Organohydrogel for Absorption-Dominated Electromagnetic Interference Shielding and Multi-Mode Intelligent Responsiveness[J]. Advanced Functional Materials, 2025, 35(18): 2418870.
[37] HU B Y, GUO H, CUI Y, et al.Engineering Multifunctional Phase Change Composites Enabled by Dual-Interpenetrating Hybrid Scaffold for Excellent Thermal Conductivity and Electromagnetic Absorption[J]. Chemical Engineering Journal, 2024, 492: 152259.
[38] ZHOU Z H, LI M Z, HUANG H D, et al.Structuring Hierarchically Porous Architecture in Biomass-Derived Carbon Aerogels for Simultaneously Achieving High Electromagnetic Interference Shielding Effectiveness and High Absorption Coefficient[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18840-18849.
[39] YANG J M, LIAO X, LI J S, et al.Light-Weight and Flexible Silicone Rubber/MWCNTS/Fe3O4 Nanocomposite Foams for Efficient Electromagnetic Interference Shielding and Microwave Absorption[J]. Composites Science and Technology, 2019, 181: 107670.
[40] XIE P T, SHI Z C, FENG M, et al.Recent Advances in Radio-Frequency Negative Dielectric Metamaterials by Designing Heterogeneous Composites[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 679-695.
[41] HUANG L X, DUAN Y P, LIU J, et al.Bionic Composite Metamaterials for Harvesting of Microwave and Integration of Multifunctionality[J]. Composites Science and Technology, 2021, 204: 108640.
[42] MEI H, YANG W Q, ZHAO X, et al.In-Situ Growth of SiC Nanowires@carbon Nanotubes on 3D Printed Metamaterial Structures to Enhance Electromagnetic Wave Absorption[J]. Materials & Design, 2021, 197: 109271.
[43] HUANG Y X, YUAN X J, CHEN M J, et al.Ultrathin Multifunctional Carbon/Glass Fiber Reinforced Lossy Lattice Metastructure for Integrated Design of Broadband Microwave Absorption and Effective Load Bearing[J]. Carbon, 2019, 144: 449-456.
[44] XU L, WAN S, HENG Y Q, et al.Double Layered Design for Electromagnetic Interference Shielding with Ultra-Low Reflection Features: PDMS Including Carbon Fibre on Top and Graphene on Bottom[J]. Composites Science and Technology, 2023, 231: 109797.
[45] HAO R X, YANG Y Q, HE P Y, et al.Janus Structure Design of Polyimide Composite Foam for Absorption-Dominated EMI Shielding and Thermal Insulation[J]. Journal of Materials Science & Technology, 2025, 206: 317-326.
[46] LIU A, QIU H, LU X H, et al.Asymmetric Structural MXene/PBO Aerogels for High-Performance Electromagnetic Interference Shielding with Ultra-Low Reflection[J]. Advanced Materials, 2025, 37(5): 2414085.
[47] WANG Y Y, ZHANG F, LI N, et al.Carbon-Based Aerogels and Foams for Electromagnetic Interference Shielding: A Review[J]. Carbon, 2023, 205: 10-26.
[48] CHENG H R, XING L L, ZUO Y, et al.Constructing Nickel Chain/MXene Networks in Melamine Foam towards Phase Change Materials for Thermal Energy Management and Absorption-Dominated Electromagnetic Interference Shielding[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 755-765.
[49] LIANG C B, ZHANG W, LIU C L, et al.Multifunctional Phase Change Textiles with Electromagnetic Interference Shielding and Multiple Thermal Response Characteristics[J]. Chemical Engineering Journal, 2023, 471: 144500.
[50] CHEN T, CAI J, GONG D, et al.Magnetically Driven Hierarchically Ordered Carbonyl iron@SiO2/Ni@Ag/ Silicone Rubber Composite Film for Enhanced Electromagnetic Interference Shielding with Ultralow Reflection[J]. Journal of Materials Chemistry C, 2023, 11(20): 6597-6606.
[51] SHENG A, REN W, YANG Y Q, et al.Multilayer WPU Conductive Composites with Controllable Electro-Magnetic Gradient for Absorption-Dominated Electromagnetic Interference Shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105692.
[52] LI X L, YIN X W, SONG C Q, et al.Self-Assembly Core-Shell Graphene-Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance[J]. Advanced Functional Materials, 2018, 28(41): 1803938.
[53] CHANG Y J, HAO R X, YANG Y Q, et al.Progressive Conductivity Modular Assembled Fiber Reinforced Polymer Composites for Absorption Dominated Ultraefficient Electromagnetic Interference Shielding[J]. Composites Part B: Engineering, 2023, 260: 110766.
[54] LI Y, LAN X Q, WU F, et al.Steam-Chest Molding of Polypropylene/Carbon Black Composite Foams as Broadband EMI Shields with High Absorptivity[J]. Composites Communications, 2020, 22: 100508.
[55] ZENG S L, HUANG Z X, JIANG H, et al.From Waste to Wealth: A Lightweight and Flexible Leather Solid Waste/Polyvinyl Alcohol/Silver Paper for Highly Efficient Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 52038-52049.
[56] RYU S H, HAN Y K, KWON S J, et al.Absorption-Dominant, Low Reflection EMI Shielding Materials with Integrated Metal Mesh/TPU/CIP Composite[J]. Chemical Engineering Journal, 2022, 428: 131167.
[57] WANG H, BI H Q, LIANG D D, et al.Absorption-Dominated Electromagnetic Shielding and Excellent Thermal Conduction Properties of Poly(vinylidene fluoride)/SnBi58/Co-C Composites with Layered Structure[J]. Journal of Alloys and Compounds, 2022, 921: 165998.
[58] ZUO T C, XIE C L, WANG W, et al.Ti3C2Tx MXene-Ferroferric Oxide/Carbon Nanotubes/Waterborne Polyurethane-Based Asymmetric Composite Aerogels for Absorption-Dominated Electromagnetic Interference Shielding[J]. ACS Applied Nano Materials, 2023, 6(6): 4716-4725.
[59] WANG Z, WANG S B, ZHANG K L, et al.Heterostructured Composite Foam with Highly Efficient Absorption-Dominant EMI Shielding Capability and Mechanical Robustness[J]. Composites Communications, 2023, 40: 101603.
[60] LI X Y, WU M H, CHEN J L, et al.A Facile and Large-Scale Approach to Prepare Macroscopic Segregated Polyether Block Amides/Carbon Nanostructures Composites with a Gradient Structure for Absorption-Dominated Electromagnetic Shielding with Ultra-Low Reflection[J]. Composites Communications, 2023, 40: 101628.
[61] YANG J M, WANG H, ZHANG H X, et al.Multistage Microcellular Waterborne Polyurethane Composite with Optionally Low-Reflection Behavior for Ultra-Efficient Electromagnetic Interference Shielding[J]. Journal of Materials Science & Technology, 2025, 208: 132-140.
[62] WANG Y Y, ZHOU Z H, ZHOU C G, et al.Lightweight and Robust Carbon Nanotube/Polyimide Foam for Efficient and Heat-Resistant Electromagnetic Interference Shielding and Microwave Absorption[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8704-8712.
[63] ZHANG P C, LI H Y, LIANG H Y, et al.Ultra-Lightweight Asymmetric Hierarchical Porous Structure for High-Efficiency Absorption-Dominated Electromagnetic Interference Shielding[J]. Composites Part B: Engineering, 2025, 290: 111969.

基金

中央引导地方科技发展资金自由探索类基础研究项目(YDZJSX2025D037); 国家自然科学基金项目(52403058,U24A2074); 中国-白俄罗斯电磁环境效应“一带一路”联合实验室开放基金重点项目(ZBKF2022030301)

PDF(9329 KB)

Accesses

Citation

Detail

段落导航
相关文章

/