具有双铁磁层结构的薄膜吸波剂及其磁共振频率调控研究

徐子洋, 李维, 王峰, 刘星

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 10-18.

PDF(4816 KB)
PDF(4816 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (17) : 10-18. DOI: 10.19554/j.cnki.1001-3563.2025.17.002
轻质宽频电磁复合材料

具有双铁磁层结构的薄膜吸波剂及其磁共振频率调控研究

  • 徐子洋1a,b, 李维1b,2,*, 王峰1a,2, 刘星1b,2
作者信息 +

Thin-film Wave Absorbers with a Double Ferromagnetic Layer Structure and Their Magnetic Resonance Frequency Modulation

  • XU Ziyang1a,b, LI Wei1b,2,*, WANG Feng1a,2, LIU Xing1b,2
Author information +
文章历史 +

摘要

目的 通过调节双铁磁层厚度比获得高磁导率吸波剂和吸波性能宽频可设计的磁性吸波材料。方法 采用磁控溅射法溅射控制Fe50Co50、Ni靶的溅射时间进而调控Fe50Co50、Ni的厚度比,制备出不同厚度比的(Fe50Co50/Ni/SiO2)n多层结构磁性薄膜材料,并通过将(Fe50Co50/Ni/SiO2)n薄膜溶于醇水溶液中超声破碎获得对应不同频率的吸收剂。结果 在Fe50Co50与Ni厚度比由0∶4增加至4∶0的过程中,薄膜的面内各向异性在3 819~8 992 A/m之间调节,铁磁共振频率在1.3~4.5 GHz实现调控。结论 调控磁性薄膜内部Fe50Co50与Ni层厚度比的方法可以有效地增大材料的饱和磁化强度以及面内各向异性场,进而调节了吸波材料的铁磁共振频率,拓宽了该材料体系的应用频段。

Abstract

The work aims to obtain high permeability wave absorbers and magnetic wave-absorbing materials with designable broadband designable wave-absorbing properties by adjusting the thickness ratio of the double ferromagnetic layer. Magnetron sputtering method was used to sputter control the sputtering time of Fe50Co50 and Ni target and then regulate the thickness ratio of Fe50Co50 and Ni to prepare (Fe50Co50/Ni/SiO2)n multilayer structured magnetic thin-film materials with different thickness ratios, and the (Fe50Co50/Ni/SiO2)n thin films were ultrasonically crushed by dissolving them into an alcohol aqueous solution to obtain the magnetic absorbers with different frequencies. The in-plane anisotropy of the films was regulated between 3 819~8 992 A/m and the ferromagnetic resonance frequency was achieved between 1.3 and 4.5 GHz during the increase of the Fe50Co50 to Ni thickness ratio from 0∶4 to 4∶0. The method of regulating the thickness ratio of Fe50Co50 to Ni layer inside the magnetic film can effectively increase the saturation magnetisation strength and the in-plane anisotropy field of the material, which in turn regulates the ferromagnetic resonance frequency of the wave-absorbing material and broadens the frequency band of application of this material system.

关键词

磁控溅射 / 频率调控 / 铁磁共振损耗

Key words

magnetron sputtering / frequency modulation / ferromagnetic resonance loss

引用本文

导出引用
徐子洋, 李维, 王峰, 刘星. 具有双铁磁层结构的薄膜吸波剂及其磁共振频率调控研究[J]. 包装工程(技术栏目). 2025, 46(17): 10-18 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.002
XU Ziyang, LI Wei, WANG Feng, LIU Xing. Thin-film Wave Absorbers with a Double Ferromagnetic Layer Structure and Their Magnetic Resonance Frequency Modulation[J]. Packaging Engineering. 2025, 46(17): 10-18 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.002
中图分类号: TB32    TB48    TB33   

参考文献

[1] JIN X W, LI T, SHI H G, et al.MHz Cut-off Frequency and Permeability Mechanism of Iron-Based Soft Magnetic Composites[J]. Chinese Physics B, 2024, 33(9): 097501.
[2] KIM S H, LEE S Y, ZHANG Y L, et al.Carbon-Based Radar Absorbing Materials Toward Stealth Technologies[J]. Advanced Science, 2023, 10(32): 2303104.
[3] CHEN J B, LIANG X H, LIU W, et al.Mesoporous Carbon Hollow Spheres as a Light Weight Microwave Absorbing Material Showing Modulating Dielectric Loss[J]. Dalton Transactions, 2019, 48(27): 10145-10150.
[4] ZHENG W, YE W X, YANG P G, et al.Recent Progress in Iron-Based Microwave Absorbing Composites: A Review and Prospective[J]. Molecules, 2022, 27(13): 4117.
[5] ZHAO C X, WANG H, BU Y Y, et al.Structures, Principles, and Properties of Metamaterial Perfect Absorbers[J]. Physical Chemistry Chemical Physics, 2023, 25(44): 30145-30171.
[6] TANG K K, LONG F H, ZHANG F H, et al.Research Progress on High-Temperature-Resistant Electromagnetic Wave Absorbers Based on Ceramic Materials: A Review[J]. Nanomaterials, 2025, 15(4): 268.
[7] LI H Y, LI X H, CHENG M L, et al.Super Magnetic Loss Induced by Tunable Damping Coefficient through Ni Nanoparticles Size Matching in Magnetic Carbon[J]. Carbon, 2023, 211: 118117.
[8] VIALA B, INTURI V R, BARNARD J A.Effect of Magnetic Annealing on the Behavior of FeTaN Films[J]. Journal of Applied Physics, 1997, 81(8): 4498-4500.
[9] WU L H, SHI S H, LIU J, et al.Multicolored Microwave Absorbers with Dynamic Frequency Modulation[J]. Nano Energy, 2023, 118: 108938.
[10] KUANG D T, SUN X G, DENG L W, et al.Achieving Excellent Tunability of Magnetic Property and Microwave Absorption Performance of FeZn-C Core-Shell Nanoparticles by Designing the Fe/Zn Ratio[J]. Advanced Powder Technology, 2023, 34(2): 103931.
[11] BOBROVSKII S Y, IAKUBOV I T, LAGARKOV A N, et al.Adjustable Microwave Magnetic Spectra of Metamaterials Based on Ferromagnetic Film Laminates[J]. IEEE Transactions on Magnetics, 2017, 53(10): 2800906.
[12] CHAI G Z, YANG Y C, ZHU J Y, et al.Adjust the Resonance Frequency of (Co90Nb10/Ta)n Multilayers from 1.4 to 6.5 GHz by Controlling the Thickness of Ta Interlayers[J]. Applied Physics Letters, 2010, 96: 012505.
[13] TRAN V T, FU C C, LI K M.Predicting Magnetization of Ferromagnetic Binary Fe Alloys from Chemical Short Range Order[J]. Computational Materials Science, 2020, 172: 109344.
[14] YANG Q M, XU Q M, FANG Y Z, et al.Crystallization Mechanism of Fe-Based Nanocrystalline Alloy[J]. Acta Physica Sinica, 2009, 58(6): 4072.
[15] WANG H, ZHOU J Y, WANG Y N, et al.Resonance Frequency of Ferromagnetic/Ferromagnetic Bilayers with Bilinear and Biquadratic Coupling[J]. Indian Journal of Physics, 2021, 95(11): 2359-2364.
[16] PATERAS A, HARDER R, MANNA S, et al.Room Temperature Giant Magnetostriction in Single-Crystal Nickel Nanowires[J]. NPG Asia Materials, 2019, 11: 59.
[17] KHAN I, HONG J S.Magnetic Anisotropy of C and N Doped Bulk FeCo Alloy: A First Principles Study[J]. Journal of Magnetism and Magnetic Materials, 2015, 388: 101-105.
[18] DU Y W, SANG H, XU Q Y, et al.Intergranule Interaction in Magnetic Granular Films[J]. Materials Science and Engineering: A, 2000, 286(1): 58-64.
[19] NANDWANA V, ZHOU R Y, MOHAPATRA J, et al.Exchange Coupling in Soft Magnetic Nanostructures and Its Direct Effect on Their Theranostic Properties[J]. ACS Applied Materials & Interfaces, 2018, 10(32): 27233-27243.
[20] LESLIE-PELECKY D L, RIEKE R D. Magnetic Properties of Nanostructured Materials[J]. Chemistry of Materials, 1996, 8(8): 1770-1783.
[21] DO H M, LE T H P, TRAN D T, et al. Magnetic Interaction Effects in Fe3O4@CoFe2O4 Core/Shell Nanoparticles[J]. Journal of Science: Advanced Materials and Devices, 2024, 9(1): 100658.
[22] MENG Y, PANG S J, CHANG C T, et al.Magnetic Softening of the Fe83Si3B11P2Cu1 Amorphous/Nanocrystalline Alloys with Large-Size Pre-Existing Α-Fe Grains by High Heating-Rate Annealing[J]. Journal of Materials Research and Technology, 2022, 20: 161-168.
[23] SOHN J, HAN S H, YAMAGUCHI M, et al.Tunable Electromagnetic Noise Suppressor Integrated with a Magnetic Thin Film[J]. Applied Physics Letters, 2006, 89(10): 103501.
[24] LUO C Y, LIU X, WANG F, et al.High Permeability in Broadband of Co-Sputtered [Fe-Fe20Ni80/Cr]n Multilayer Films[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2024, 39(2): 410-416.
[25] FILIPKOWSKI M E, KREBS J J, PRINZ G A, et al.Giant Near-90 Degrees Coupling in Epitaxial CoFe/Mn/CoFe Sandwich Structures[J]. Physical Review Letters, 1995, 75(9): 1847-1850.
[26] SHI H C, TANG B, LIU C F.Effect of Interlayer Exchange Coupling Interaction on Topological Phase of a Bilayer Honeycomb Heisenberg Ferromagnet[J]. Acta Physica Sinica, 2024, 73(13): 137501.
[27] LIU X D, HUANG Y, DING L, et al.Synthesis of Covalently Bonded Reduced Graphene Oxide-Fe3O4 Nanocomposites for Efficient Electromagnetic Wave Absorption[J]. Journal of Materials Science & Technology, 2021, 72: 93-103.

基金

国家自然科学基金(52473078)

PDF(4816 KB)

Accesses

Citation

Detail

段落导航
相关文章

/