目的 开发具有宽频带、强吸收特性的新型电磁波吸收材料,以解决当前电磁污染治理中传统材料吸收频带窄、损耗效率低等关键问题。方法 采用模板法制备金属有机框架(MOF)材料衍生的碗状Zn-C/C复合材料。首先通过改进的无皂乳液聚合法,利用聚乙烯吡咯烷酮(PVP)的长链结构形成的空间位阻效应和成核效应,调控PVP用量实现对聚苯乙烯(PS)微球粒径的精准控制,制备不同粒径(250、500、850 nm)PS微球;基于界面组装与ZIF-8原位生长机制,构建ZIF-8/PS前驱体,经800 ℃碳化处理获得Zn-C/C复合材料。采用XRD、Raman、SEM和矢量网络分析仪系统分析材料结构及电磁参数。结果 随着PS粒径减小,材料石墨化程度显著提高,缺陷增多,且碗状结构更完整,形成更丰富的异质界面,利于实现高性能电磁波吸收。碗状Zn-C/C复合材料不仅在2.1 mm厚度下,实现4.73 GHz有效吸收带宽;还可通过厚度调控,达成在2~18 GHz频段内的有效吸收全覆盖。结论 本研究成功制备出具有独特碗状结构的Zn-C/C复合材料,通过精确调控模板尺寸实现了材料微观结构与电磁响应的定向设计。所获材料在超薄厚度下兼具宽频带与强吸收特性,其性能显著优于传统碳基吸波材料,为高性能电磁防护材料的开发提供了新思路。
Abstract
The work aims to develop novel electromagnetic wave absorbing materials with broadband and strong absorption characteristics, so as to address key issues in current electromagnetic pollution control, such as the narrow absorption frequency bands and low loss efficiency of traditional materials. Bowl shaped Zn-C/C composite materials derived from metal-organic framework (MOF) materials were prepared with a template method. Initially, through an improved soap-free emulsion polymerization process, the steric hindrance effect and nucleation effect resulting from the long-chain structure of polyvinylpyrrolidone (PVP) were utilized. By adjusting the amount of PVP, the precise control over the particle size of polystyrene (PS) microspheres was achieved, resulting in the preparation of PS microspheres with different particle sizes (250, 500, and 850 nm). Based on the interface assembly and in-situ growth mechanism of ZIF-8, ZIF-8/PS precursors were constructed and subsequently carbonized at 800 ℃ to obtain Zn-C/C composites. The material structure and electromagnetic parameters were systematically analyzed through XRD, Raman spectroscopy, SEM, and a vector network analyzer. As the particle size of PS decreased, the graphitization degree of the material significantly increased, accompanied by an increase in defects and more complete bowl shaped structures, which formed richer heterogeneous interfaces conducive to achieving high-performance electromagnetic wave absorption. The bowl shaped Zn-C/C composite material not only achieved an effective absorption bandwidth of 4.73 GHz at a thickness of 2.1 mm, but also enabled full coverage of effective absorption within the 2-18 GHz frequency band through thickness adjustment. The Zn-C/C composite materials with a unique bowl shaped structure is successfully prepared, achieving directional design of the material microstructure and electromagnetic response through precise control of template size. The obtained materials exhibit both broadband and strong absorption characteristics at ultra-thin thicknesses, with performance significantly superior to that of traditional carbon-based microwave absorbing materials. This research provides new insights for the development of high-performance electromagnetic protective materials.
关键词
金属有机框架 /
衍生碳 /
复合材料 /
电磁波吸收
Key words
metal organic framework /
derived carbon /
composite material /
electromagnetic wave absorption
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WU L H, LIU J, LIU X, et al.Microwave-Absorbing Foams with Adjustable Absorption Frequency and Structural Coloration[J]. Nano Letters, 2024, 24(11): 3369-3377.
[2] LI T, ZHI D D, GUO Z H, et al.3D Porous Biomass-Derived Carbon Materials: Biomass Sources, Controllable Transformation and Microwave Absorption Application[J]. Green Chemistry, 2022, 24(2): 647-674.
[3] LUO J, YANG M Y, WU H J.Electromagnetic Wave Absorbing Materials: Fundamentals and Applications[M]. New York: John Wiley & Sons, 2024.
[4] 刘瑞林, 刘容含, 肖立嵘, 等. CoFeCu-ZIF衍生材料的制备及吸波性能研究[J]. 材料研究与应用, 2025, 19(1): 82-90.
LIU R L, LIU R H, XIAO L R, et al.Preparation and Microwave Absorption Properties of CoFeCu-ZIF Derived Materials[J]. Materials Research and Application, 2025, 19(1): 82-90.
[5] FANG D B, LIU S Q, LI J B, et al.Absorber Design Based on in/C@Co/C Composites for Efficient Microwave Absorption[J]. Journal of Alloys and Compounds, 2023, 961: 170992.
[6] OUYANG J, HE Z L, ZHANG Y, et al.Trimetallic FeCoNi@C Nanocomposite Hollow Spheres Derived from Metal-Organic Frameworks with Superior Electromagnetic Wave Absorption Ability[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 39304-39314.
[7] 马茜, 强荣, 邵玉龙, 等. MOFs衍生钴/碳复合材料的制备及吸波性能研究[J]. 材料导报, 2025, 39(11): 181-189.
MA Q, QIANG R, SHAO Y L, et al.Preparation and Absorption Properties of Co/C Composites Derived from MOFs[J]. Materials Reports, 2025, 39(11): 181-189.
[8] TAO J Q, JIAO Z B, XU L L, et al.Construction of MOF-Derived Co/C Shell on Carbon Fiber Surface to Enhance Multi-Polarization Effect towards Efficient Broadband Electromagnetic Wave Absorption[J]. Carbon, 2021, 184: 571-582.
[9] GAO Z G, IQBAL A, HASSAN T, et al.Texture Regulation of Metal-Organic Frameworks, Microwave Absorption Mechanism-Oriented Structural Optimization and Design Perspectives[J]. Advanced Science, 2022, 9(35): 2204151.
[10] MIAO P, CHEN J, CHEN J X, et al.Review and Perspective of Tailorable Metal-Organic Framework for Enhancing Microwave Absorption[J]. Chinese Journal of Chemistry, 2023, 41(9): 1080-1098.
[11] LIU Y J, YAO Z J, ZHOU J T, et al.Facile Synthesis of MOF-Derived Concave Cube Nanocomposite by Self-Templated Toward Lightweight and Wideband Microwave Absorption[J]. Carbon, 2022, 186: 574-588.
[12] LIU Z L, CHEN Z C, ZHOU J T, et al.The Low-Dimensional Units Modulation of 3D Floral Fe/Ni@C towards Efficient Microwave Absorption[J]. Carbon, 2024, 230: 119684.
[13] ZHANG X, QIAO J, JIANG Y Y, et al.Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents[J]. Nano-Micro Letters, 2021, 13(1): 135.
[14] WANG M Q, CAO M S.Perspectives on Metal-Organic Framework-Derived Microwave Absorption Materials[J]. Journal of Materials Science & Technology, 2025, 214: 37-52.
[15] 刘晓旭, 左金龙, 张铁男. 聚苯乙烯微球制备及功能化研究进展[J]. 应用化工, 2025, 54(6): 1616-1621.
LIU X X, ZUO J L, ZHANG T N.Advances in Polystyrene Microsphere Research: Preparation and Functionalization[J]. Applied Chemical Industry, 2025, 54(6): 1616-1621.
[16] LIU A P, YU C, LIN J, et al.Construction of CuInS2@ZIF-8 Nanocomposites with Enhanced Photocatalytic Activity and Durability[J]. Materials Research Bulletin, 2019, 112: 147-153.
[17] WANG J X, YANG J F, YANG J, et al.Design of Novel CNT/RGO/ZIF-8 Ternary Hybrid Structure for Lightweight and Highly Effective Microwave Absorption[J]. Nanotechnology, 2020, 31(41): 414001.
[18] DUAN L T, ZHOU J T, LIU Y J, et al.Synergistic Defense: Compositional Regulation and Temperature Engineering of TMCS for Enhanced Microwave Absorption and Corrosion Protection[J]. Journal of Materials Science & Technology, 2024, 201: 187-196.
[19] ZHANG M, LING H L, WANG T, et al.An Equivalent Substitute Strategy for Constructing 3D Ordered Porous Carbon Foams and Their Electromagnetic Attenuation Mechanism[J]. Nano-Micro Letters, 2022, 14(1): 157.
[20] SHEN Z T, ZU Y P, CHEN Y Q, et al.Microwave Absorption Performance of Porous Carbon Particles Modified by Nickel with Different Morphologies[J]. Journal of Materials Science & Technology, 2023, 137: 79-90.
[21] LV H L, YANG Z H, PAN H G, et al.Electromagnetic Absorption Materials: Current Progress and New Frontiers[J]. Progress in Materials Science, 2022, 127: 100946.
[22] TIAN Y X, HUANG M, KONG N Z, et al.Designing Insulative SiC Coating Layer on the Artificial Graphite Particle to Achieve Synergy of Wave Absorption and Thermal Conduction[J]. Carbon, 2023, 214: 118352.
[23] TAO J Q, TAN R Y, XU L L, et al.Ion-Exchange Strategy for Metal-Organic Frameworks-Derived Composites with Tunable Hollow Porous and Microwave Absorption[J]. Small Methods, 2022, 6(9): 2200429.
[24] YANG R, YUAN J Q, YU C H, et al.Efficient Electromagnetic Wave Absorption by SiC/Ni/NiO/C Nanocomposites[J]. Journal of Alloys and Compounds, 2020, 816: 152519.
[25] WANG L, YU X F, LI X, et al.MOF-Derived Yolk-Shell Ni@C@ZnO Schottky Contact Structure for Enhanced Microwave Absorption[J]. Chemical Engineering Journal, 2020, 383: 123099.
[26] SHU R W, LI W J, WU Y, et al.Nitrogen-Doped Co-C/MWCNTS Nanocomposites Derived from Bimetallic Metal-Organic Frameworks for Electromagnetic Wave Absorption in the X-Band[J]. Chemical Engineering Journal, 2019, 362: 513-524.
[27] LIU W, TAN S J, YANG Z H, et al.Hollow Graphite Spheres Embedded in Porous Amorphous Carbon Matrices as Lightweight and Low-Frequency Microwave Absorbing Material through Modulating Dielectric Loss[J]. Carbon, 2018, 138: 143-153.
[28] YANG Z H, LV H L, WU R B.Rational Construction of Graphene Oxide with MOF-Derived Porous NiFe@C Nanocubes for High-Performance Microwave Attenuation[J]. Nano Research, 2016, 9(12): 3671-3682.
基金
国家自然科学基金(52172295); 山西省基础研究计划(202403021212121)