20#钢/TA2偶对在流动海水中的电偶腐蚀行为研究

黄家乐, 邢少华, 刘近增, 徐铖, 曾鲜

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (13) : 304-312.

PDF(6089 KB)
PDF(6089 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (13) : 304-312. DOI: 10.19554/j.cnki.1001-3563.2025.13.034
装备防护

20#钢/TA2偶对在流动海水中的电偶腐蚀行为研究

  • 黄家乐1,2, 邢少华1,*, 刘近增1, 徐铖1, 曾鲜2
作者信息 +

Galvanic Corrosion Behavior of 20# Steel/TA2 Couple in Flowing Seawater

  • HUANG Jiale1,2, XING Shaohua1,*, LIU Jinzeng1, XU Cheng1, ZENG Xian2
Author information +
文章历史 +

摘要

目的 通过综合模拟管路平台研究20#钢/TA2偶对电偶腐蚀行为,为海水管路穿舱件腐蚀控制提供理论依据。方法 通过电化学法测量偶对在不同流速海水中电偶电位和电偶电流密度,并利用扫描电镜、三维视频显微镜和X射线衍射分析偶对表面腐蚀产物形貌和成分,结合二者总结电偶腐蚀机理。结果 在静态海水中,20#钢电偶腐蚀速率为0.171 mm/a;在流动海水中,由于溶解氧、Cl-扩散速率增大,电偶腐蚀速率显著增加。在1~5 m/s流速海水中,20#钢/TA2电偶腐蚀速率增加20~30倍,且电偶腐蚀速率随着流速增加而增加。结论 流动海水会显著提升20#钢与TA2偶对的电偶腐蚀速率,必须通过电绝缘技术避免二者形成电偶对或者采用阴极保护技术进行保护。

Abstract

The work aims to simulate the galvanic corrosion behavior of 20# steel/TA2 through the comprehensive simulation pipeline platform to provide a theoretical basis for the corrosion control of seawater pipeline through-hull components. The galvanic potential and current density of couples in seawater at different flow rates within a simulated pipeline platform were measured. Additionally, SEMm, 3DVM and XRD were employed to analyze the morphology and composition of corrosion products on the surface of the couples. By integrating these findings, the mechanisms underlying galvanic corrosion were explored. The results indicated that in static seawater, the galvanic corrosion rate of 20# steel was only 0.171 mm/a; In flowing seawater, the rate of galvanic corrosion significantly increased due to the enhanced diffusion rates of dissolved oxygen and Cl-. In seawater with a flow rate ranging from 1 to 5 m/s, the galvanic corrosion rate of 20# steel/TA2 increased by 20 to 30 times, and the galvanic corrosion rate rose with the increase of the flow rate. Due to the significant increase in the galvanic corrosion rate between 20# steel and TA2 when exposed to flowing seawater, it is essential to employ electrical insulation techniques to prevent the formation of a galvanic couple between the two materials. Alternatively, cathodic protection methods can be utilized for safeguarding purposes.

关键词

电偶腐蚀 / 海水管路 / 流动海水 / 20#钢 / TA2

Key words

galvanic corrosion / seawater pipelines / flowing seawater / 20#steel / TA2

引用本文

导出引用
黄家乐, 邢少华, 刘近增, 徐铖, 曾鲜. 20#钢/TA2偶对在流动海水中的电偶腐蚀行为研究[J]. 包装工程(技术栏目). 2025, 46(13): 304-312 https://doi.org/10.19554/j.cnki.1001-3563.2025.13.034
HUANG Jiale, XING Shaohua, LIU Jinzeng, XU Cheng, ZENG Xian. Galvanic Corrosion Behavior of 20# Steel/TA2 Couple in Flowing Seawater[J]. Packaging Engineering. 2025, 46(13): 304-312 https://doi.org/10.19554/j.cnki.1001-3563.2025.13.034
中图分类号: TG174   

参考文献

[1] 周永峰, 王洪仁. 船舶海水管系的环境腐蚀研究进展[J]. 材料开发与应用, 2008, 23(3): 16-20.
ZHOU Y F, WANG H R.Review of Research on the Environmental Corrosion of Ship Seawater Systems[J]. Development and Application of Materials, 2008, 23(3): 16-20.
[2] 罗雯军, 彭戈, 蔡淑艳. 舰船海水管路系统电偶腐蚀控制技术[J]. 舰船科学技术, 2020, 42(15): 98-100.
LUO W J, PENG G, CAI S Y.Summary of Research on Galvanic Corrosion Control Technology of Seawater Pipeline System[J]. Ship Science and Technology, 2020, 42(15): 98-100.
[3] 李永华, 张文旭, 陈小龙, 等. 海洋工程用钛合金研究与应用现状[J]. 钛工业进展, 2022, 39(1): 43-48.
LI Y H, ZHANG W X, CHEN X L, et al.Research and Application Status of Titanium Alloys for Marine Engineering[J]. Titanium Industry Progress, 2022, 39(1): 43-48.
[4] 王战辉, 张智芳, 高勇. 碳素钢在模拟海水中的腐蚀行为研究[J]. 甘肃科学学报, 2020, 32(4): 39-42.
WANG Z H, ZHANG Z F, GAO Y.Study on the Corrosion Behavior of Carbon Steel in Simulated Sea Water[J]. Journal of Gansu Sciences, 2020, 32(4): 39-42.
[5] 夏江敏, 李竹影, 林育锋, 等. TA2-B10管不同电偶腐蚀防护方式对B10管腐蚀特性的影响[J]. 国防科技大学学报, 2022, 44(3): 148-155.
XIA J M, LI Z Y, LIN Y F, et al.Influence of Different Galvanic Corrosion Protection Methods of TA2-B10 Pipe on the Corrosion Characteristics of B10 Pipe[J]. Journal of National University of Defense Technology, 2022, 44(3): 148-155.
[6] HØL P J, MØLSTER A, GJERDET N R. Should the Galvanic Combination of Titanium and Stainless Steel Surgical Implants Be Avoided[J]. Injury, 2008, 39(2): 161-169.
[7] 解辉, 武兴伟, 刘斌, 等. 钛合金/其他金属在海洋环境中的电偶腐蚀行为的研究进展[J]. 材料保护, 2022, 55(4): 155-166.
XIE H, WU X W, LIU B, et al.Research Progress in the Galvanic Corrosion Behavior of Titanium Alloy/Other Metals in Marine Environment[J]. Materials Protection, 2022, 55(4): 155-166.
[8] 张文毓. 电偶腐蚀与防护的研究进展[J]. 全面腐蚀控制, 2018, 32(12): 51-56.
ZHANG W Y.Progress in Research on Galvanic Corrosion Behavior and Protection[J]. Total Corrosion Control, 2018, 32(12): 51-56.
[9] 漆路平, 丁一, 廖庆亮, 等. 钛合金的电偶腐蚀研究现状[J]. 新材料产业, 2017(3): 35-39.
QI L P, DING Y, LIAO Q L, et al.Research Status of Galvanic Corrosion of Titanium Alloy[J]. Advanced Materials Industry, 2017(3): 35-39.
[10] 南榕, 蔡建华, 杨健, 等. 钛及钛合金腐蚀行为研究进展[J]. 钛工业进展, 2023, 40(5): 40-48.
NAN R, CAI J H, YANG J, et al.A Review of Corrosion Resistance of Titanium and Titanium Alloys[J]. Titanium Industry Progress, 2023, 40(5): 40-48.
[11] 王海林, 雍兴跃, 侯纯扬, 等. 碳钢/钛合金复合材料在3%NaCl溶液中的电偶腐蚀研究[J]. 化工机械, 2009, 36(5): 423-426.
WANG H L, YONG X Y, HOU C Y, et al.A Research on Galvanic Corrosion of Carbon Steel/Titanium Alloy Composite Materials in 3%NaCl Solution[J]. Chemical Engineering & Machinery, 2009, 36(5): 423-426.
[12] 薛世坤, 宋影伟, 董凯辉, 等. 钛-碳钢在模拟海水溶液中电偶腐蚀与缝隙腐蚀的耦合作用机制研究[J]. 表面技术, 2022, 51(5): 70-78.
XUE S K, SONG Y W, DONG K H, et al.Synergetic Effect of Galvanic and Crevice on Titanium Coupled with Carbon Steel in Simulated Seawater Solution[J]. Surface Technology, 2022, 51(5): 70-78.
[13] 邢少华, 刘近增, 白舒宇, 等. 海水流速对B10/B30电偶腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
XING S H, LIU J Z, BAI S Y, et al.Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(2): 391-398.
[14] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
TENG L, CHEN X.Research Progress of Galvanic Corrosion in Marine Environment[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(4): 531-539.
[15] 李强, 唐晓, 李焰. 冲刷腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
LI Q, TANG X, LI Y.Progress in Research Methods for Erosion-Corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2014, 34(5): 399-409.
[16] 刘近增, 邢少华, 钱峣, 等. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
LIU J Z, XING S H, QIAN Y, et al.Study on Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(1): 127-134.
[17] 王振华, 白杨, 马晓, 等. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
WANG Z H, BAI Y, MA X, et al.Numerical Simulation of Galvanic Corrosion for Couple of Ti-Alloy with Cu-Alloy in Seawaters[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 38(4): 403-408.
[18] 杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究[J]. 中国腐蚀与防护学报, 2006, 26(5): 263-266.
DU M, GUO Q K, ZHOU C J.Galvanic Corrosion of Carbon Steel/Titanium and Carbon Steel/Titanium/Navel Brass in Seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2006, 26(5): 263-266.
[19] WANG C L, LI Q F, WU J H.Galvanic Corrosion of Titanium/Cu-Ni Alloy/High Strength Steel Multiphase Material System in Seawater[J]. Key Engineering Materias, 2012, 525(6): 325-328.

基金

工信部船舶CAE研发应用项目

PDF(6089 KB)

Accesses

Citation

Detail

段落导航
相关文章

/