用于电力开关柜温湿度压力无源无线测量的自供电系统设计

阮景煇, 吴宁诚, 许谱名, 刘赟, 范彦平

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (13) : 197-204.

PDF(2038 KB)
PDF(2038 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (13) : 197-204. DOI: 10.19554/j.cnki.1001-3563.2025.13.022
自动化与智能化技术

用于电力开关柜温湿度压力无源无线测量的自供电系统设计

  • 阮景煇1, 吴宁诚2, 许谱名1, 刘赟1, 范彦平2,*
作者信息 +

Design of a Self-powered System for Passive Wireless Measurement of Temperature, Humidity and Pressure in the Power Switchgear

  • RUAN Jinghui1, WU Ningcheng2, XU Puming1, LIU Yun1, FAN Yanping2,*
Author information +
文章历史 +

摘要

目的 针对电力开关柜内温湿度、压力测量传感器供电问题,需要一种能让无线传感节点实现自供电的技术。基于射频能量收集(Radio frequency energy harvesting,RFEH)的无线自供能系统已被证明是更有效的解决方案。方法 本文设计一种宽输入功率范围高效率的整流器,可应用于低功率的无线传感系统。采用谐波抑制网络对二次三次谐波进行了一定控制,以及设计了π型匹配网络,提升了整体的效率。基于此整流器设计了适用于无源无线传感系统的RFEH系统。结果 通过仿真与测试对整流电路的性能进行验证,结果表明设计出的整流器在-7.5~15 dBm输入功率范围内能量收集效率均大于50%,9 dBm时达到最高的转换效率71.6%,在-14 dBm时仍有30%的转换效率可用于低功率的物联网应用。最后,基于此RFEH系统搭建了温湿度及压力无源传感系统,实验结果显示该系统可在2 m处实时监测温湿度及压力。结论 本文所设计的系统对低功率的物联网应用如无线传感系统具有重要意义。

Abstract

Due to the power supply issue of temperature, humidity, and pressure sensors in the power switchgear, the work aims to propose a technology enabling wireless sensor nodes to achieve self-powering. A wireless self-powered system based on Radio Frequency Energy Harvesting (RFEH) has been proven to be a more effective solution. A high-efficiency rectifier with a wide input power range was designed for low-power wireless sensing systems. A harmonic suppression network was employed to control the second and third harmonics, and a π-type matching network was designed to enhance the overall efficiency. Based on this rectifier, an RFEH system suitable for passive wireless sensing systems was developed. The performance of the rectifier circuit was validated through simulation and testing, showing an energy harvesting efficiency above 50% within the input power range of -7.5 to 15 dBm, achieving a peak conversion efficiency of 71.6% at 9 dBm, and maintaining a conversion efficiency of 30% at -14 dBm, making it suitable for low-power IoT applications. Finally, a passive temperature, humidity, and pressure sensing system based on this RFEH system was constructed. Experimental results demonstrated that this system could monitor temperature, humidity, and pressure in real time at a distance of 2 m. The system designed in this study is of significant importance for low-power IoT applications, such as wireless sensing systems.

关键词

射频能量收集 / 无线自供电系统 / 无线传感系统 / 整流器 / Dickson倍压电路

Key words

Radio Frequency Energy Harvesting (RFEH) / wireless self-powered system / wireless sensing system / rectifier / Dickson voltage multiplier circuit

引用本文

导出引用
阮景煇, 吴宁诚, 许谱名, 刘赟, 范彦平. 用于电力开关柜温湿度压力无源无线测量的自供电系统设计[J]. 包装工程(技术栏目). 2025, 46(13): 197-204 https://doi.org/10.19554/j.cnki.1001-3563.2025.13.022
RUAN Jinghui, WU Ningcheng, XU Puming, LIU Yun, FAN Yanping. Design of a Self-powered System for Passive Wireless Measurement of Temperature, Humidity and Pressure in the Power Switchgear[J]. Packaging Engineering. 2025, 46(13): 197-204 https://doi.org/10.19554/j.cnki.1001-3563.2025.13.022
中图分类号: TB486   

参考文献

[1] 陈国强, 戴成, 申正义, 等. 基于QFD与FBS的可移动电力检测设备创新设计[J]. 包装工程, 2021, 42(2): 43-50.
CHEN G Q, DAI C, SHEN Z Y, et al.Design of Movable Electric Testing Station Based on QFD and FBS[J]. Packaging Engineering, 2021, 42(2): 43-50.
[2] 邓泽霞, 刘峰, 纪钢. 基于MSP430F149的电力参数检测仪设计[J]. 包装工程, 2011, 32(17): 91-94.
DENG Z X, LIU F, JI G.Design of Electric Power Parameters Measuring Device Based on MSP430F149 MCU[J]. Packaging Engineering, 2011, 32(17): 91-94.
[3] 高岭, 王璞, 伊朋. 高压电器设备包装材料优选研究[J]. 包装工程, 2023, 44(1): 279-285.
GAO L, WANG P, YI P.Selection of Packaging Materials for High-Voltage Electrical Equipment[J]. Packaging Engineering, 2023, 44(1): 279-285.
[4] 赵争鸣, 王旭东. 电磁能量收集技术现状及发展趋势[M]. 北京: 清华大学电机系, 2015: 1813-1821.
ZHAO Z M, WANG X D, et al.State-of-the-Art and Future Trends of Electromagnetic Energy Harvesting[M]. Beijing: Department of Electrical Engineering, Tsinghua University, 2015: 1813-1821.
[5] SHAIKH F K, ZEADALLY S.Energy Harvesting in Wireless Sensor Networks: A Comprehensive Review[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 1041-1054.
[6] SUDEVALAYAM S, KULKARNI P.Energy Harvesting Sensor Nodes: Survey and Implications[J]. IEEE Communications Surveys & Tutorials, 2011, 13(3): 443-461.
[7] CHEN D D, LI R Y, XU J Q, et al.Recent Progress and Development of Radio Frequency Energy Harvesting Devices and Circuits[J]. Nano Energy, 2023, 117: 108845.
[8] AU N D, LE-HUU H, SEO C.A Wide Dynamic-Range Rectifier at 433 MHz for Multiple-Antenna Impedances[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 196-199.
[9] GUO J P, ZHANG H X, ZHU X N.Theoretical Analysis of RF-DC Conversion Efficiency for Class-F Rectifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(4): 977-985.
[10] XU P C, FLANDRE D, BOL D. Analysis, Modeling,Design of a 2.45-GHz RF Energy Harvester for SWIPT IoT Smart Sensors[J]. IEEE Journal of Solid-State Circuits, 2019, 54(10): 2717-2729.
[11] LI P Y, LONG Z H, JIN L H, et al.Battery-Free Wireless Torque Sensor Powered by RF Energy[J]. IEEE Internet of Things Journal, 2023, 10(18): 16371-16380.
[12] AU N D, SEO C.An 18.9-DB Dynamic-Range Rectifier Based on Time-Domain Modeling and Quality Factor[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(9): 623-625.
[13] SHI G, SHI Z B, XIA Y S, et al.A Novel High-Efficiency Portable Integrated System for Synergistic Harvesting of Radio Frequency and Soil Energy[J]. Energy Conversion and Management, 2024, 313: 118594.
[14] 胡凡君, 汪德超, 张晓林, 等. 应用于高压监测传感器的无线充电系统[J]. 电气自动化, 2020, 42(4): 72-74.
HU F J, WANG D C, ZHANG X L, et al.Wireless Charging System Applied to High-Voltage Monitoring Sensors[J]. Electrical Automation, 2020, 42(4): 72-74.
[15] 洪培瑶, 李澍源. 面向无线传感网络节点的热电能量收集系统设计[J]. 机电工程技术, 2024, 53(9): 291-294.
HONG P Y, LI S Y.Thermoelectric Energy Collection System Design for Wireless Sensor Network Nodes[J]. Mechanical & Electrical Engineering Technology, 2024, 53(9): 291-294.
[16] ZHAO F D, INSERRA D, WEN G J, et al.A High-Efficiency Inverse Class-F Microwave Rectifier for Wireless Power Transmission[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(11): 725-728.
[17] WAN F Y, WU L L, RAVELO B, et al.Analysis of Interconnect Line Coupled with a Radial-Stub Terminated Negative Group Delay Circuit[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, 62(5): 1813-1821.
[18] ABOUALALAA M, MANSOUR I, POKHAREL R K.Energy Harvesting Rectenna Using High-Gain Triple-Band Antenna for Powering Internet-of-Things (IoT) Devices in a Smart Office[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2001312.

基金

国网湖南省电力有限公司科技项目(人才专项: 5216A524000T); 国家自然科学基金(52075339)

PDF(2038 KB)

Accesses

Citation

Detail

段落导航
相关文章

/