目的 通过优化气力输送系统中弯管的结构,从而降低弯管磨损的问题。方法 在弯管磨损中心切向处添加起旋装置,将弯管中的轴流输送转变为旋流输送。主管道轴线与起旋装置的中心轴线夹角为55°,保持弯管的气速为20 m/s,通过CFD-DEM,对比小麦颗粒在起旋装置气速分别为20、30、40 m/s时的流场特性。结果 基于CFD-DEM对弯管内部颗粒进行运动仿真,分别对比了2种装置的静压、迹线图、旋流强度、颗粒分布图等指标,发现导流叶片式的静压将与旋流强度均大于旋流管道式,螺旋效果更优。通过建立实验平台进行实验验证,实验结果与仿真结果相吻合。结论 导流叶片式更适合弯管输送,起旋效果明显,颗粒在弯管内分布均匀,整体呈螺旋前进,可以更有效地减少弯管与颗粒之间的磨损。
Abstract
The work aims to reduce the wear of the bending pipe by optimizing the structure of the bending pipe in the pneumatic conveying system. A swirling device was installed at the tangential position of the wear center of the bending pipe to transform the axial flow delivery in the bending pipe into a swirling flow delivery. The angle between the main pipe axis and the center axis of the swirling device was 55°, maintaining an airflow velocity in the bending pipe of 20 m/s. Through CFD-DEM, the flow field characteristics of wheat particles were compared at airflow velocities of 20, 30, and 40 m/s in the swirling device. Based on CFD-DEM, the motion simulation of particles in the bending pipe was conducted, comparing static pressure, trajectory diagrams, swirl intensity, particle distribution charts, etc., of the two devices. It was found that the static pressure of the guide blade type and the swirl intensity were both greater than that of the swirling pipeline type, indicating a superior spiral effect. An experimental platform was established for validation, and the experimental results were consistent with the simulation results. The guide blade type is more suitable for conveying in bending pipes, showing a significant vortex effect, with particles distributed evenly in the bending pipe and moving in a spiral manner, which can more effectively reduce the wear between the bending pipes and particles.
关键词
粮食颗粒 /
旋流输送 /
弯管磨损 /
CFD-DEM
Key words
grain particles /
swirl conveying /
wear of bending pipe /
CFD-DEM
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家统计局. 国家统计局关于2024年粮食产量数据的公告[EB/OL]. (2024-12-13). https://www.stats.gov.cn/sj/zxfb/202412/t20241213_1957744.html utm_source=chatgpt.com
National Bureau of Statistics. Announcement of the National Bureau of Statistics on Grain Production Data for2024[EB/OL]. (2024-12-13). https://www.stats.gov.cn/sj/zxfb/202412/t20241213_1957744.html utm_source=chatgpt.com
[2] 孙多鑫, 赵贵宾, 刘祎鸿, 等. 关于组建县属国有农场保障国家粮食安全的思考[J]. 甘肃农业, 2022(12): 22-26.
SUN D X, ZHAO G B, LIU Y H, et al.Thoughts on Establishing County-Owned State-Owned Farms to Ensure National Food Security[J]. Gansu Agriculture, 2022(12): 22-26.
[3] 欧阳江丰. 粮食颗粒气固混合器结构设计及两相流动特性研究[D]. 郑州: 河南工业大学, 2024.
OUYANG J F.Structural Design and Two-Phase Flow Characteristics of Grain Granular Gas-Solid Mixer[D]. Zhengzhou: Henan University of Technology, 2024.
[4] 李瑞松, 安鹏宇, 申鹏, 等. 粮食产业与码头运营AI排产优化策略[J]. 中国水运, 2025(4): 38-40.
LI R S, AN P Y, SHEN P, et al.Grain Industry and Terminal Operation AI Scheduling Optimization Strategy[J]. China Water Transport, 2025(4): 38-40.
[5] 张岚冰. 基于CFD-DEM耦合的粉体气力输送装置的设计与搭建[D]. 青岛: 青岛科技大学, 2022.
ZHANG L B.Design and Construction of Pneumatic Conveying Device for Powders Based on CFD-DEM Coupling[D]. Qingdao: Qingdao University of Science and Technology, 2022.
[6] ADEDEJI O E, YU W C, SANDERS R S.Analysis of Local Wear Variables for High-Precision Erosion Modelling in Complex Geometries[J]. Wear, 2019, 426: 562-569.
[7] BANAKERMANI M R, NADERAN H, SAFFAR-AVVAL M.An Investigation of Erosion Prediction for 15° to 90° Elbows by Numerical Simulation of Gas-Solid Flow[J]. Powder Technology, 2018, 334: 9-26.
[8] REDONDO C, CHÁVEZ-MODENA M, MANZANERO J, et al. CFD-Based Erosion and Corrosion Modeling in Pipelines Using a High-Order Discontinuous Galerkin Multiphase Solver[J]. Wear, 2021, 478: 203882.
[9] 刘晓辉, 王国立, 赵占斌, 等. 结构流充填料浆环管试验及其阻力特性研究[J]. 中国钼业, 2016, 40(5): 20-23.
LIU X H, WANG G L, ZHAO Z B, et al.Study on the Flow Resistance Characteristics of Structure Fluid Backfilling Slurry Based on Loop Pipe Testing[J]. China Molybdenum Industry, 2016, 40(5): 20-23.
[10] 周锋. 煤炭大颗粒气力输送关键技术研究[D]. 徐州: 中国矿业大学, 2022.
ZHOU F.Study on Key Technology of Pneumatic Conveying for large Coal Particles[D]. Xuzhou: China University of Mining and Technology, 2022.
[11] 封凯, 聂伟, 陈凤官, 等. 气力输送系统中弯管的易磨损位置及其机理分析[J]. 化学反应工程与工艺, 2021, 37(2): 106-112.
FENG K, NIE W, CHEN F G, et al.Positioning the Erosion Wear of Bend Pipes in the Pneumatic Conveying System[J]. Chemical Reaction Engineering and Technology, 2021, 37(2): 106-112.
[12] 王云龙, 徐志刚, 杨骏杰. 基于CFD的弯管抗冲蚀结构优化研究[J]. 河南科技, 2024, 51(20): 47-50.
WANG Y L, XU Z G, YANG J J.Research on Optimization of Elbow Anti-erosion Structure Based on CFD[J]. Henan Science and Technology, 2024, 51(20): 47-50.
[13] 胡伟波, 苏利威, 周甲伟, 等. 侧喷吹减磨弯头磨损特性的CFD-DEM仿真分析[J]. 世界有色金属, 2024(6): 8-10.
HU W B, SU L W, ZHOU J W, et al.Numerical Study on the Erosion Characteristics of Wear-Resistant Elbow in Side Injection Pipeline by CFD-DEM Coupled Simulation[J]. World Nonferrous Metals, 2024(6): 8-10.
[14] 张嘉, 张宏, 侯集, 等. 旋流气力输送管道的结构优化研究[J]. 化学工程, 2024, 52(6): 47-52.
ZHANG J, ZHANG H, HOU J, et al.Research on Structural Optimization of Swirl Pneumatic Conveying Pipeline[J]. Chemical Engineering (China), 2024, 52(6): 47-52.
[15] FAN L S, ZHU C.Principle of Gas-Solid Two-Phase Flow Upper/(US)[M]. Beijing: Science Press, 2018: 3-4.
[16] 薛百文, 杨世春, 杨胜强. 螺旋流的形成方式及各种起旋装置的对比分析[J]. 机械工程与自动化, 2005(1): 98-100.
XUE B W, YANG S C, YANG S Q.Comparison and Analysis of All Kinds of Spiral Flow Generator and the Ways of Generating Spiral Flow[J]. Mechanical Engineering & Automation, 2005(1): 98-100.
[17] 王树立, 饶永超, 韩永嘉, 等. 螺旋流发生装置的对比分析研究[J]. 流体机械, 2013, 41(2): 30-38.
WANG S L, RAO Y C, HAN Y J, et al.Comparative Analysis and Research on Spiral Flow Generator[J]. Fluid Machinery, 2013, 41(2): 30-38.
[18] FOKEER S, LOWNDES I, KINGMAN S.An Experimental Investigation of Pneumatic Swirl Flow Induced by a Three Lobed Helical Pipe[J]. International Journal of Heat and Fluid Flow, 2009, 30(2): 369-379.
[19] LI J P, ZHOU F, YANG D L, et al.Effect of Swirling Flow on Large Coal Particle Pneumatic Conveying[J]. Powder Technology, 2020, 362: 745-758.
[20] XU X M, WANG L, ZHANG Y Y, et al.Characterization of Flow Field of Swirling Flow Conveying in Bulk Grain Pipeline Based on Gas-Solid Multiphase Coupling[J]. Journal of Food Process Engineering, 2023, 46(1): e14199.
[21] 姜棚仁. 散粮管道气力输送多相流场特性研究[D]. 郑州: 河南工业大学, 2023.
JIANG P R.Study on Multiphase Flow Field Characteristics in Pneumatic Conveying of Bulk Grain[D]. Zhengzhou: Henan University of Technology, 2023.
[22] 周甲伟. 煤炭颗粒旋流气力输送机理及性能研究[D]. 徐州: 中国矿业大学, 2017.
ZHOU J W.Research on Mechanism and Performance of Swirling Flow Pneumatic Conveying System for Coal Particle[D]. Xuzhou: China University of Mining and Technology, 2017.
[23] 王龙. 散粮管道旋流气力输送关键技术研究[D]. 郑州: 河南工业大学, 2023.
WANG L.Research on Key Technology of Swirling Pneumatic Conveying in Bulk Grain Pipeline[D]. Zhengzhou: Henan University of Technology, 2023.
[24] 周甲伟, 荆双喜, 刘瑜. 煤炭颗粒旋流气力输送系统设计与研究[J]. 煤矿机械, 2021, 42(11): 1-4.
ZHOU J W, JING S X, LIU Y.Design and Research on Swirling Flow Pneumatic Conveying System of Coal Particle[J]. Coal Mine Machinery, 2021, 42(11): 1-4.
[25] SHANG K, LI Y X, SONG H H, et al.Research on Flow Field Characteristics of Curved Pipe in Bulk Grain Cyclone Conveying Based on Gas Solid Coupling[J]. Journal of Food Process Engineering, 2024, 47(9): e14725.
[26] CHU K W, WANG B, XU D L, et al.CFD-DEM Simulation of the Gas-Solid Flow in a Cyclone Separator[J]. Chemical Engineering Science, 2011, 66(5): 834-847.
[27] ERGUN S.Fluid Flow through Packed Columns[J]. Chemical Engineering Progress, 48(2): 89-94.
[28] WEN C Y, YU Y H.Mechanics of Fluidization[J]. AIChE Symposium Series, 62: 100-111.
[29] JI Y, LIU S Y, LI J P.Experimental and Numerical Studies on Dense-Phase Pneumatic Conveying of Spraying Material in Venturi[J]. Powder Technology, 2018, 339: 419-433.
[30] ZHOU J W, SHANGGUAN L J, GAO K D, et al.Pickup Characteristics of Lump Non-Spherical Particles in an Oscillating Airflow[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 14145-14156.
[31] LI J P, ZHOU F, YANG D L, et al.Effect of Swirling Flow on Large Coal Particle Pneumatic Conveying[J]. Powder Technology, 2020, 362: 745-758.
[32] CUNDALL P A, STRACK O D L. A Discrete Numerical Model for Granular Assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
基金
国家“十四五”重点研发计划(2022YFD2100201)