高阻隔聚乳酸/蒙脱土薄膜的制备及其在冷鲜羊肉包装中的应用

陈钟生, 张元, 刘敏, 寇竟邦, 白嘉鑫, 董同力嘎, 云雪艳

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (13) : 141-150.

PDF(2538 KB)
PDF(2538 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (13) : 141-150. DOI: 10.19554/j.cnki.1001-3563.2025.13.016
农产品保鲜与食品包装

高阻隔聚乳酸/蒙脱土薄膜的制备及其在冷鲜羊肉包装中的应用

  • 陈钟生1,4, 张元1,4, 刘敏1,2,4, 寇竟邦1,4, 白嘉鑫1,4, 董同力嘎1,3,4, 云雪艳1,3,4,*
作者信息 +

Fabrication of High-barrier Polylactic Acid/Montmorillonite Composite Films and Their Application in Chilled Mutton Packaging

  • CHEN Zhongsheng1,4, ZHANG Yuan1,4, LIU Min1,2,4, KOU Jingbang1,4, BAI Jiaxin1,4, DONG Tungalag1,3,4, YUN Xueyan1,3,4,*
Author information +
文章历史 +

摘要

目的 开发一种具有优异阻隔性能,并适用于冷鲜羊肉保鲜的可降解绿色食品包装。方法 利用羧甲基纤维素钠(CMC-Na)辅助分散蒙脱土(MMT)并形成稳定悬浮液,通过真空抽滤诱导MMT片层水平排列,随后借助壳聚糖(CS)将MMT阻隔层固着于PLLA基底,制备高阻隔聚乳酸/蒙脱土(PLLA/CS/MC)薄膜。分析了薄膜的微观形貌、力学性能、阻隔性能,并评估其在冷鲜羊肉保鲜中的应用效果。结果 MMT片层的部分插层和定向排列使PLLA/CS/MC薄膜实现了超高的阻隔性能(OTR<0.008 cm3/(m2·d))和紫外阻隔能力,同时保持了中等的透明度(56.8%)。力学性能测试也表明,阻隔层并未对PLLA的力学性能造成不利影响。此外,在冷鲜羊肉保鲜实验中,PLLA/CS/MC薄膜组呈现最低的腐败速率,贮藏25 d后菌落总数为5.95 lg(CFU/g),硫代巴比妥酸含量为0.98 mg/kg,挥发性盐基总氮含量为19.47 mg/100 g,pH值为5.85,冷鲜羊肉还处于二级鲜度。结论 PLLA/CS/MC薄膜在冷鲜羊肉食品包装应用中有效减缓了冷鲜羊肉贮藏期间各项指标的腐败速率,使冷鲜羊肉的货架期延长至25 d,为提高PLLA薄膜阻隔性能及其在冷鲜羊肉包装中的应用提供理论依据。

Abstract

The work aims to develop a biodegradable green food packaging with excellent barrier properties and suitable for the preservation of chilled mutton. CMC-Na was used to assist in the dispersion of MMT to form a stable suspension, and the horizontal alignment of MMT sheet layers was induced by vacuum filtration, followed by the preparation of high barrier polylactic acid/montmorillonite (PLLA/CS/MC) films by fixing the MMT barrier layer to the PLLA substrate with the help of chitosan (CS). The micro-morphology, mechanical properties, and barrier properties of the films were analyzed and evaluated for their application in the preservation of chilled mutton. The experimental results showed that the exfoliated state and oriented alignment of the MMT sheet layers enabled the PLLA/CS/MC films to achieve ultra-high barrier properties (OTR<0.008 cm3/m2·d) and UV-blocking ability, while maintaining moderate transparency (56.8%). Mechanical property tests also showed that the barrier layer did not adversely affect the mechanical properties of PLLA. In addition, the PLLA/CS/MC film group presented the lowest spoilage rate in the chilled mutton preservation experiment. After 25 days of storage, it produced 5.95 lg(CFU/g) of total colony count, 0.98 mg/kg of thiobarbituric acid, 19.47 mg/100g of total volatile saline nitrogen, and a pH value of 5.85, and the chilled mutton was still in the second level of freshness. In summary, PLLA/CS/MC films effectively slow down the corruption rate of various indicators during storage of chilled mutton in the application of chilled mutton packaging, and extended the shelf life of chilled mutton to 25 d. It provides a theoretical basis for the improvement of the barrier performance of PLLA films and their application in chilled mutton packaging.

关键词

聚乳酸(PLLA) / 蒙脱土(MMT) / 高阻隔 / 可降解 / 冷鲜羊肉保鲜

Key words

polylactic acid (PLLA) / montmorillonite (MMT) / high-barrier / biodegradability / chilled mutton preservation

引用本文

导出引用
陈钟生, 张元, 刘敏, 寇竟邦, 白嘉鑫, 董同力嘎, 云雪艳. 高阻隔聚乳酸/蒙脱土薄膜的制备及其在冷鲜羊肉包装中的应用[J]. 包装工程(技术栏目). 2025, 46(13): 141-150 https://doi.org/10.19554/j.cnki.1001-3563.2025.13.016
CHEN Zhongsheng, ZHANG Yuan, LIU Min, KOU Jingbang, BAI Jiaxin, DONG Tungalag, YUN Xueyan. Fabrication of High-barrier Polylactic Acid/Montmorillonite Composite Films and Their Application in Chilled Mutton Packaging[J]. Packaging Engineering. 2025, 46(13): 141-150 https://doi.org/10.19554/j.cnki.1001-3563.2025.13.016
中图分类号: TB484.9   

参考文献

[1] GUO Z L, WU S Z, LIN J, et al.Active Film Preparation Using Pectin and Polyphenols of Watermelon Peel and Its Applications for Super-Chilled Storage of Chilled Mutton[J]. Food Chemistry, 2023, 417: 135838.
[2] SARFRAZ J, GULIN-SARFRAZ T, NILSEN- NYGAARD J, et al.Nanocomposites for Food Packaging Applications: An Overview[J]. Nanomaterials, 2021, 11(1): 10.
[3] GUZMAN-PUYOL S, BENÍTEZ J J, HEREDIA- GUERRERO J A. Transparency of Polymeric Food Packaging Materials[J]. Food Research International, 2022, 161: 111792.
[4] SIDDIQUI S A, YANG X, DESHMUKH R K, et al.Recent Advances in Reinforced Bioplastics for Food Packaging - a Critical Review[J]. International Journal of Biological Macromolecules, 2024, 263: 130399.
[5] YUN X, LIU L, HU J, et al.Mechanical and Gas Permeability Properties of Poly(L‐Lactic Acid)-Based Films and Their Application in Fresh Produce Preservation—Review[J]. Packaging Technology and Science, 2024, 37(4): 293-317.
[6] SINGHA S, HEDENQVIST M S.A Review on Barrier Properties of Poly(lactic acid)/Clay Nanocomposites[J]. Polymers, 2020, 12(5): 1095.
[7] PARK S H, LEE H S, CHOI J H, et al.Improvements in Barrier Properties of Poly(lactic acid) Films Coated with Chitosan or Chitosan/Clay Nanocomposite[J]. Journal of Applied Polymer Science, 2012, 125(S1): 675-680.
[8] KOH H C, PARK J S, JEONG M A, et al.Preparation and Gas Permeation Properties of Biodegradable Polymer/Layered Silicate Nanocomposite Membranes[J]. Desalination, 2008, 233(1/2/3): 201-209.
[9] SVAGAN A J, ÅKESSON A, CÁRDENAS M, et al. Transparent Films Based on PLA and Montmorillonite with Tunable Oxygen Barrier Properties[J]. Biomacromolecules, 2012, 13(2): 397-405.
[10] YU Q X, ZHU L J, LIU T, et al.Preparation of Nacre-Like Polyimide/Montmorillonite Composite Films with Excellent Water Vapor Barrier Properties by Gravity-Induced Deposition[J]. Advanced Materials Interfaces, 2021, 8(3): 2001786.
[11] SUN C, FANG Z Q, QIN F M, et al.Insight into the Dispersive Mechanism of Carboxylated Nanofibrilllated Cellulose for Individual Montmorillonite in Water[J]. Composites Part B: Engineering, 2019, 177: 107399.
[12] FATHI ACHACHLOUEI B, ZAHEDI Y.Fabrication and Characterization of CMC-Based Nanocomposites Reinforced with Sodium Montmorillonite and TiO2 Nanomaterials[J]. Carbohydrate Polymers, 2018, 199: 415-425.
[13] SHEHAP A M, NASR R A, MAHFOUZ M A, et al.Preparation and Characterizations of High Doping Chitosan/MMT Nanocomposites Films for Removing Iron from Ground Water[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104700.
[14] TAGHIZADEH M T, SABOURI N.Study of Enzymatic Degradation and Water Absorption of Nanocomposites Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Blends Containing Sodium Montmorillonite Clay Nanoparticle by Cellulase and Α-Amylase[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(6): 995-1001.
[15] CHEN P, XIE F W, TANG F Z, et al.Influence of Plasticiser Type and Nanoclay on the Properties of Chitosan-Based Materials[J]. European Polymer Journal, 2021, 144: 110225.
[16] 李冠辉. 纤维素纳米纤丝-二维蒙脱土复合薄膜的有序结构构筑及性能研究[D]. 广州: 华南理工大学, 2022: 52.
LI G H.A Study on Constructing the Ordered Structure of Cellulose Nanofibril-2D Montmorillonite Composite Films and Their Properties[D]. Guangzhou: South China University of Technology, 2022: 52.
[17] KUREK M, ŠČETAR M, VOILLEY A, et al. Barrier Properties of Chitosan Coated Polyethylene[J]. Journal of Membrane Science, 2012, 403: 162-168.
[18] MA Y T, YANG J N, WANG X L, et al.Preparation of High-Density Polyethylene/Montmorillonite Nanocomposites with High Gas Barrier by Micro-Nano Torsional Laminated Extrusion[J]. Polymer Composites, 2023, 44(10): 6747-6757.
[19] WU L L, WANG J J, HE X, et al.Using Graphene Oxide to Enhance the Barrier Properties of Poly(lactic acid) Film[J]. Packaging Technology and Science, 2014, 27(9): 693-700.
[20] TANG X Y, YANG T Y, YU D J, et al.Current Insights and Future Perspectives of Ultraviolet Radiation (UV) Exposure: Friends and Foes to the Skin and beyond the Skin[J]. Environment International, 2024, 185: 108535.
[21] EZATI P, RIAHI Z, RHIM J W.CMC-Based Functional Film Incorporated with Copper-Doped TiO2 to Prevent Banana Browning[J]. Food Hydrocolloids, 2022, 122: 107104.
[22] ABDEL AZIZ M S, SALAMA H E. Development of Alginate-Based Edible Coatings of Optimized UV-Barrier Properties by Response Surface Methodology for Food Packaging Applications[J]. International Journal of Biological Macromolecules, 2022, 212: 294-302.
[23] SUN X D, HOLLEY R A.Antimicrobial and Antioxidative Strategies to Reduce Pathogens and Extend the Shelf Life of Fresh Red Meats[J]. Comprehensive Reviews in Food Science and Food Safety, 2012, 11(4): 340-354.
[24] NADEEM H, NASERI M, SHANMUGAM K, et al.An Energy Efficient Production of High Moisture Barrier Nanocellulose/Carboxymethyl Cellulose Films via Spray-Deposition Technique[J]. Carbohydrate Polymers, 2020, 250: 116911.
[25] BEKHIT A E A, GITERU S G, HOLMAN B W B, et al. Total Volatile Basic Nitrogen and Trimethylamine in Muscle Foods: Potential Formation Pathways and Effects on Human Health[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(4): 3620-3666.
[26] ZHANG J T, GUAN B W, ZHANG Y, et al.Development of High Barrier Poly(l-actic acid)/Chitosan/Graphene Oxide Flexible Films for Meat Packaging by Layer-by-Layer[J]. Food Bioscience, 2024, 60: 104304.
[27] LUCIANO G, MONAHAN F J, VASTA V, et al.Lipid and Colour Stability of Meat from Lambs Fed Fresh Herbage or Concentrate[J]. Meat Science, 2009, 82(2): 193-199.
[28] DE ALBA M, BURGESS C M, POLLARD K, et al.Impact of Industrial Practices on the Microbial and Quality Attributes of Fresh Vacuum-Packed Lamb Joints[J]. Foods, 2022, 11(13): 1850.
[29] KIM Y H B, WARNER R D, ROSENVOLD K. Influence of High Pre-Rigor Temperature and Fast pH Fall on Muscle Proteins and Meat Quality: a Review[J]. Animal Production Science, 2014, 54(4): 375-395.
[30] WANG C Z, WU L L, ZHANG Y, et al.A Water-Absorbent Mat Incorporating Β-Cyclodextrin/Eugenol Inclusion Complex for Preservation of Cold Fresh Mutton[J]. Food Biophysics, 2022, 17(3): 437-447.

基金

内蒙古自治区青年科技人才发展项目(创新团队)(NMGIRT2310); 2020年草原英才工程青年创新创业人才(DC2000001954)

PDF(2538 KB)

Accesses

Citation

Detail

段落导航
相关文章

/