目的 通过激光后处理技术在二维周期性结构表面实现对结构色色调的调控,并通过添加波导层的方式提高结构色的饱和度。方法 实验中通过气-液界面自组装的方法制备二维光子晶体结构色基底,并在其表面沉积一层金膜,随后使用激光后处理的方式对样品进行扫描处理,并添加波导层结构实现高饱和度结构色调控。结果 表面镀膜后的二维胶体晶体基底颜色随着测量角度的增加逐渐红移,呈现出蓝色—蓝绿色—橙色—橘红色的色调变化,使用激光后处理的方式扫描基底后,随着扫描速度的增加,样品的衍射光谱向长波方向有一定程度的移动,添加波导层结构后呈现出较高的饱和度,实现了淡蓝色—青蓝紫色—蓝绿色—橘黄色—红色的颜色转变。结论 通过激光处理和添加波导层的方法可实现对二维光子晶体结构色的基底颜色色调及饱和度的调控,在光学防伪、印刷包装等领域具有巨大的应用前景。
Abstract
The work aims to control the hue of structural colors on the two-dimensional periodic structure through laser post-processing technology, and increase the saturation of structural colors by adding waveguide layers. A two-dimensional photonic crystal substrate was prepared by self-assembly at the gas-liquid interface, and a layer of gold film was deposited on its surface. Then, the sample was processed by laser post-processing technology, and a waveguide layer was also added to obtain high saturation structural color effect. As a result, after coating, the color of the two-dimensional colloidal crystal substrate gradually shifted red with the increase of detecting angle, showing a color hue change of blue - blue-green - orange - orange red. After post-processing of the substrate by laser, the diffraction spectrum of the sample shifted to the long wave direction with the increase of scanning speed. Subsequently, it showed a high saturation and achieved a color transition from light blue - cyan purple - blue-green - orange yellow - red after addition of waveguide layer. The method of laser post-processing and addition of waveguide layers can control the color hue and saturation of two-dimensional photonic crystal precisely, which has great application prospects in the fields of optical anti-counterfeiting, printing and packaging.
关键词
结构色 /
光栅衍射 /
光子晶体 /
波导层 /
激光处理
Key words
structural color /
grating diffraction /
photonic crystal /
waveguide layer /
laser post-processing
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GENG J, XU L Y, YAN W, et al.High-Speed Laser Writing of Structural Colors for Full-Color Inkless Printing[J]. Nature Communications, 2023, 14: 565.
[2] YE Z Y, YIN Y D.Printing Mechanochromic Chiral Structural Colors[J]. Matter, 2024, 7(9): 2804-2806.
[3] 范小平, 张清宇, 杨雯雯, 等. 基于SiO2@CA微球的非晶结构色涂层的制备及光学性能[J]. 包装工程, 2024, 45(15): 14-22.
FAN X P, ZHANG Q Y, YANG W W, et al.Preparation of Amorphous Structured Color Coatings Based on SiO2@CA Microspheres and Their Optical Properties[J]. Packaging Engineering, 2024, 45(15): 14-22.
[4] 梁力生, 杨雯雯, 李梅, 等. 结构色响应型食品智能包装的研究与应用进展[J/OL]. 食品工业科技, 2025: 1-17(2025-03-14). https://link.cnki.net/doi/10.13386/j.issn1002-0306.2024100386.
LIANG L S, YANG W W, LI M, et al. Research and Application Progress of Structural Color-Responsive Food Intelligent Packaging[J/OL]. Science and Technology of Food Industry, 2025: 1-17 (2025-03-14). https://link.cnki.net/doi/10.13386/j.issn1002-0306.2024100386.
[5] PAN G, ZHANG J, LIN Y, et al.Hollow SiO2 Photonic Crystal - Graphene Quantum Dots Composite and Its Application in Multi-Level Intelligent Anti-Counterfeiting Through Regulation Synergistic Effect of Structural Color and Fluorescence[J]. Composites Part B: Engineering, 2024, 282: 111551.
[6] GAO Y F, GE K Y, ZHANG Z, et al.Fine Optimization of Colloidal Photonic Crystal Structural Color for Physically Unclonable Multiplex Encryption and Anti-Counterfeiting[J]. Advanced Science, 2024, 11(20): 2305876.
[7] 李雪涵, 刘凌志, 黄敏, 等. 基于微透镜阵列的结构色动态图形显示(英文)[J]. 印刷与数字媒体技术研究, 2025 (2): 162-168.
LI X H, LIU L Z, HUANG M, et al.Structural Color Dynamic Graphics Display Based on Microlens Array[J]. Printing and Digital Media Technology Study, 2025(2): 162-168.
[8] YU J L, XIA C C, WANG W Y, et al.Fabrication and Applications of Textile-Based Structurally Colored Materials[J]. EcoMat, 2025, 7(4): e70012.
[9] LI G, LENG M Y, WANG S C, et al.Printable Structural Colors and Their Emerging Applications[J]. Materials Today, 2023, 69: 133-159.
[10] HÄNTSCH Y, DIAZ A, HOLLER M, et al. Multi-Scale Structural Characterization of Ceramic-Based Photonic Glasses for Structural Colors[J]. Discover Nano, 2024, 19(1): 114.
[11] DONG X, WANG Z L, SONG F, et al.Construction of Cellulose Structural-Color Pigments with Tunable Colors and Iridescence/Non-Iridescence[J]. Carbohydrate Polymers, 2023, 313: 120877.
[12] YOUN S W, SUZUKI K, HIROSHIMA H, et al.Development of Electron Beam Lithography Technique for Large Area Nano Structural Color[J]. Japanese Journal of Applied Physics, 2024, 63(3): 3-6.
[13] MA W, KOU Y S, ZHAO P, et al.Bioinspired Structural Color Patterns Derived from 1D Photonic Crystals with High Saturation and Brightness for Double Anti-Counterfeiting Decoration[J]. ACS Applied Polymer Materials, 2020, 2(4): 1605-1613.
[14] TARUTANI N, UESUGI R, UEMURA K, et al.Understanding the Electrophoretic Deposition Accompanied by Electrochemical Reactions Toward Structurally Colored Bilayer Films[J]. ACS Applied Materials And Interfaces, 2022, 14(20): 23653-23659.
[15] WEI T C, ZHU X W, HOU X N, et al.Preparation of Biomimetic Non-Iridescent Structural Color Based on Polystyrene-Polycaffeic Acid Core-Shell Nanospheres[J]. RSC Advances, 2022, 12(6): 3602-3610.
[16] RAJAN R, KIRUBARAJ A, SAMSON S, et al.Development of Micro/Nano Pattern Arrays with Grating-Based Periodic Structures Using the Direct Laser Lithography System[J]. Current Nanoscience, 2025, 21(1): 167-177.
[17] YUAN Q, ZHANG M L, WANG D Y, et al.Solution-Processed One-Dimensional Photonic Crystals Based on Hollow Silica Exhibiting High Refractive Index Contrast[J]. ACS Applied Materials & Interfaces, 2024, 16(22): 29141-29152.
[18] LIU T Y, SOLOMON M J.Reconfigurable Grating Diffraction Structural Color in Self-Assembled Colloidal Crystals[J]. Small, 2023, 19(37): 2301871.
[19] YANG S, XIANG H M, WANG Y W, et al.Effect of Fabric Substrate and Introduction of Silk Fibroin on the Structural Color of Photonic Crystals[J]. Polymers, 2023, 15(17): 3551.
[20] 任昱晨, 胡晓雪, 黄敏, 等. 不同衬底下激光后处理对结构色呈色性能影响研究[J]. 光学学报, 2023, 43(13): 1314002.
REN Y C, HU X X, HUANG M, et al.Influence of Laser Post-Treatment on Spectral Properties of Structural Color Coatings with Different Substrates[J]. Acta Optica Sinica, 2023, 43(13): 1314002.