目的 研究废旧动力锂电池运输包装箱的热安全性和隔热、泄压措施。方法 以15组2.8 kW·h方形锂电池模组为研究对象,依据《国际海运危险货物规则》(IMDG CODE)P911与LP906包装规范要求,设计具备定向导热、泄压功能的运输包装箱,采用火灾动力学仿真软件(FDS)构建热失控燃烧模型,并与真实动力锂电池运输箱热失控触发实验做对比。结果 废旧动力锂电池运输箱采用“U”形流道设计可有效抑制火焰外窜,同时当导火槽布设于内箱长边时,其热导流效果较短边提升了43%,泄压能力明显增强,且包装箱整体满足P911及LP906要求。结论 通过FDS仿真揭示热导流与流道布局关联,实验建议一体成型箱体提升运输包装的安全性,该研究成果可为废旧动力锂电池运输包装提供安全性解决方案。
Abstract
The work aims to study the thermal safety and insulation and pressure relief measures for transport cases of spent power lithium batteries. With 15 sets of 2.8 kW·h square lithium battery modules as the research object, a transport case with directional heat conduction and pressure relief functions was designed based on the packaging specifications of "International Maritime Dangerous Goods Code" (IMDG CODE) P911 and LP906. A thermal runaway combustion model was constructed with the fire dynamics simulation software (FDS), and compared with the thermal runaway triggering experiments of the real transport case for power lithium batteries. The transport case for spent power lithium batteries adopted a U-shaped flow channel design, which effectively suppressed flame propagation. At the same time, when the ignition groove was arranged on the long side of the inner case, its heat conduction effect was 43% higher than that of the short side, and the pressure relief ability was significantly enhanced. The transport case as a whole met the requirements of P911 and LP906. The thermal conduction flow and channel layout correlation are revealed through FDS simulation. The integral case body is recommended to improve the safety of transport cases. The research results can provide a safety solution for the transport case of spent power lithium batteries.
关键词
危险品运输包装 /
热失控防护 /
数值模拟 /
锂电池安全
Key words
transport packaging for dangerous goods /
thermal runaway protection /
numerical simulation /
lithium battery safety
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GU K H, TOKORO C, TAKAYA Y, et al.Resource Recovery and Regeneration Strategies for Spent Lithium-Ion Batteries: Toward Sustainable High-Value Cathode Materials[J]. Waste Management, 2024, 179: 120-129.
[2] 李静, 李吉刚, 孙冬冬, 等. 动车组蓄电池的应用现状和发展方向[J]. 铁道车辆, 2023, 61(1): 1-6.
LI J, LI J G, SUN D D, et al.Application Status and Development Direction of Battery for EMU[J]. Rolling Stock, 2023, 61(1): 1-6.
[3] LIU Z H, ZHOU T, YANG H R, et al.A Review of the Resourceful Utilization Status for Decommissioned Power Batteries[J]. Energies, 2023, 16(23): 7869.
[4] UN ECOSOC Committee of Experts on the Transport of Dangerous Goods. Recommendations on the Transport of Dangerous Goods: Model Regulations: P911[S]. Geneva, Switzerland, United Nations Publications, 2023: 96.
[5] UN ECOSOC Committee of Experts on the Transport of Dangerous Goods. Recommendations on the Transport of Dangerous Goods: Model Regulations: LP906[S]. Geneva, Switzerland, United Nations Publications, 2023: 114.
[6] 张铜柱, 李明, 高翔, 等. 破损动力电池运输包装的探讨[J]. 电池, 2021, 51(1): 78-82.
ZHANG T Z, LI M, GAO X, et al.Discussion on the Transport Packaging of Damaged Power Battery[J]. Battery Bimonthly, 2021, 51(1): 78-82.
[7] KHANG S, AKHAI S.E-Waste and Lithium-ion Battery Recycling Insights for Sustainable Transportation[M]. Driving Green Transportation System Through Artificial intelligence and Automation; 2025: 203-204
[8] 张树杰. 锂电池防爆箱: 中国, CN201720913012.2.X[P].2017-07-26.
ZHANG S J. Lithium Battery Explosion-proof Box: China, CN201720913012.2.X[P].2017-07-26.
[9] 郭志慧, 赵林双. 锂离子电池箱爆炸危险性仿真及泄爆设计[J]. 电池, 2022, 52(1): 30-34.
GUO Z H, ZHAO L S.Simulation of Explosion Hazard of Li-Ion Battery Box and Design of Explosion Venting[J]. Battery Bimonthly, 2022, 52(1): 30-34.
[10] 马先润, 张连春, 王晓萌, 等. 废旧车用锂电池运输包装箱温度场仿真分析与优化设计[J]. 包装工程, 2024, 45(13): 300-307.
MA X R, ZHANG L C, WANG X M, et al.Simulation Analysis and Optimization Design of Temperature Field of Used Lithium Battery Transport Packaging Boxes for Vehicles[J]. Packaging Engineering, 2024, 45(13): 300-307.
[11] 李志强, 田洋洋, 刘随强. 锂电池运输包装设计与跌落仿真分析[J]. 包装工程, 2022, 43(21): 137-143.
LI Z Q, TIAN Y Y, LIU S Q.Transport Packaging Design and Drop Simulation Analysis of Lithium Battery[J]. Packaging Engineering, 2022, 43(21): 137-143.
[12] 吴泳, 李丽娜, 王志刚, 等. 通风条件下储能集装箱磷酸铁锂电池热失控气体扩散规律[J]. 消防科学与技术, 2021, 40(5): 610-612.
WU Y, LI L N, WANG Z G, et al.Influence of Ventilation on Gas Diffusion Law of Lithium Iron Phosphate Battery Fire in Energy Storage Container[J]. Fire Science and Technology, 2021, 40(5): 610-612.
[13] 程东浩, 李琰, 龚韬. 锂电池运输分类体系重新构建可行性探讨[J]. 电源技术, 2019, 43(4): 573-576.
CHENG D H, LI Y, GONG T.Discussion on Feasibility of Rebuilding Transport Classification System of Lithium Battery[J]. Chinese Journal of Power Sources, 2019, 43(4): 573-576.
[14] 高翔, 曹梦琪, 吴彬, 等. 出口锂电池运输包装的安全性评估[J]. 电池, 2018, 48(5): 350-352.
GAO X, CAO M Q, WU B, et al.Safety Assessment of Transport Packaging for Lithium Batteries Export[J]. Battery Bimonthly, 2018, 48(5): 350-352.
[15] DAI M W.Thermal Runaway Simulation of Lithium Batteries Based on COMSOL[J]. Modeling and Simulation, 2024, 13(1): 838-846.
[16] SUN P Y, BISSCHOP R, NIU H C, et al.A Review of Battery Fires in Electric Vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410.
[17] 陈吉清, 冼君琳, 兰凤崇, 等. 锂电池单体起火燃烧过程仿真模拟[J]. 重庆理工大学学报(自然科学), 2021, 35(9): 25-34.
CHEN J Q, XIAN J L, LAN F C, et al.Simulation of Combustion Process of Lithium-Ion Battery Cell[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(9): 25-34.
基金
天津市科技计划项目(24YDTPJC00550)