目的 研发可以解决废旧锂电池安全储运的包装箱。方法 根据P911和LP906的包装要求,明确防爆包装箱的技术要求,通过试验确定基础材料及部件,设计建立废旧锂电池防爆包装箱模型,打样完成后,按照GB 38031—2020的触发热失控测试方法进行试验测试,通过试验过程数据、结果数据及试验结束后的开箱情况综合分析方案效果。结果 热失控扩散试验过程中,无迸射物及火焰析出,箱体外表面(不含箱底)温度未超过100 ℃,开箱检查泄压结构未阻塞,箱体结构无异常,该包装箱能有效抑制热失控现象,基本满足国际海运危险货物规则中P911和LP906的包装要求。结论 防爆包装箱可以有效解决废旧锂电池的安全运输问题,研究及测试结果为废旧锂电池的安全储运及回收提供重要参考。
Abstract
The work aims to develop a packaging solution that ensures the safe storage and transportation of waste lithium batteries. Based on the packaging requirements of P911 and LP906, technical specifications for an explosion-proof packaging container were defined. The foundational materials and components were determined through experimental testing, and a prototype of waste lithium batteries packaging containers was designed and fabricated. After sample production, thermal runaway trigger testing was conducted in accordance with GB 38031-2020. The effectiveness of the solution was comprehensively analyzed according to test process data, result data, and post-test inspection status of the container. During the thermal runaway propagation test, no ejections or flames were observed, the external surface temperature of the container (excluding the bottom) did not exceed 100 °C, the pressure relief structure remained unobstructed upon inspection, and the container structure showed no abnormalities. The packaging container effectively suppressed thermal runaway phenomena and largely met the packaging requirements of P911 and LP906 under the International Maritime Dangerous Goods (IMDG) Code. In conclusion, the explosion-proof packaging container provides an effective solution for the safe transportation of Waste lithium batteries. The explosion-proof packaging container provides an effective solution for the safe transportation of waste lithium batteries, and the research and test results provide significant references for the safe storage, transportation, and recycling of waste lithium batteries.
关键词
废旧锂电池 /
安全储运 /
防爆包装 /
热失控 /
国际海运危险货物规则
Key words
waste lithium batteries /
safe storage and transportation /
explosion-proof packaging /
thermal runaway /
International Maritime Dangerous Goods (IMDG) Code
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU Z H, ZHOU T, YANG H R, et al.A Review of the Resourceful Utilization Status for Decommissioned Power Batteries[J]. Energies, 2023, 16(23): 7869.
[2] LI P W, LUO S H, ZHANG L, et al.Progress, Challenges, and Prospects of Spent Lithium-Ion Batteries Recycling: A Review[J]. Journal of Energy Chemistry, 2024, 89: 144-171.
[3] ZHAO Q, HU L, LI W J, et al.Recovery and Regeneration of Spent Lithium-Ion Batteries from New Energy Vehicles[J]. Frontiers in Chemistry, 2020, 8: 807.
[4] SAXENA S, LE FLOCH C, MACDONALD J, et al.Quantifying EV Battery End-of-Life through Analysis of Travel Needs with Vehicle Powertrain Models[J]. Journal of Power Sources, 2015, 282: 265-276.
[5] FARRINGTON M D.Safety of Lithium Batteries in Transportation[J]. Journal of Power Sources, 2001, 96(1): 260-265.
[6] 巩桂芬, 何兴娟, 周健民, 等. 某型号锂电池全纸化包装件跌落仿真分析[J]. 包装工程, 2023, 44(13): 277-284.
GONG G F, HE X J, ZHOU J M, et al.Simulation Analysis on Fall of a Type of Lithium Battery Fully Paper-Based Packaging Parts[J]. Packaging Engineering, 2023, 44(13): 277-284.
[7] 陈满儒, 李璐. 电池片的运输包装设计及其数值模拟[J]. 包装工程, 2012, 33(13): 75-79.
CHEN M R, LI L.Transport Packaging Design and Numerical Simulation of Solar Cell[J]. Packaging Engineering, 2012, 33(13): 75-79.
[8] 潘生林, 童捷, 翟苏婉, 等. 出口锂电池危险品运输包装的安全设计与防护[J]. 包装工程, 2015, 36(3): 27-30.
PAN S L, TONG J, ZHAI S W, et al.Safety Design and Protection of Transport Packaging for Exporting Lithium Batteries as Dangerous Goods[J]. Packaging Engineering, 2015, 36(3): 27-30.
[9] 李志强, 田洋洋, 刘随强. 锂电池运输包装设计与跌落仿真分析[J]. 包装工程, 2022, 43(21): 137-143.
[10] LI Z Q, TIAN Y Y, LIU S Q.Transport Packaging Design and Drop Simulation Analysis of Lithium Battery[J]. Packaging Engineering, 2022, 43(21): 137-143.
[11] 张树杰, 孙凯, 刘洪义. 锂电池防爆箱: CN207030035U[P].2018-02-23.ZHANG S J, SUN K, LIU H Y. Explosion-Proof Packaging for Lithium Batteries: CN207030035U[P]. 2018-02-23.
[12] 沈鸥, 陈若葵, 姜校林, 等. 锂电池防爆箱装置: CN 214731311U[P].2021-11-16.SHEN O, CHEN R K, JIANG X L, et al. Lithium Battery Explosion-Proof Box Device: CN 214731311U[P]. 2021-11-16.
[13] 曹源. 隔热层对电动汽车用金属锂电池热失控的影响[J]. 金属功能材料, 2024, 31(4): 84-89.
CAO Y.Influence of Insulation Layer on Thermal Runaway of Metal Lithium Batteries for Electric Vehicles[J]. Metallic Functional Materials, 2024, 31(4): 84-89.
[14] 林树潮, 胡宝林. 新能源汽车动力电池热失控分析[J]. 汽车与新动力, 2024, 7(4): 32-34.
LIN S C, HU B L.Thermal Runaway Analysis of Power Battery of New Energy Vehicle[J]. Automobile and New Powertrain, 2024, 7(4): 32-34.
[15] 张铜柱, 李明, 高翔, 等. 破损动力电池运输包装的探讨[J]. 电池, 2021, 51(1): 78-82.
ZHANG T Z, LI M, GAO X, et al.Discussion on the Transport Packaging of Damaged Power Battery[J]. Battery Bimonthly, 2021, 51(1): 78-82.
[16] 何杨华, 王文杰, 郝皓, 等. 退役动力电池回收模式及转运包装探讨[J]. 时代汽车, 2023(22): 132-134.
HE Y H, WANG W J, HAO H, et al.Discussion on Recycling Mode and Transshipment Packaging of Retired Power Batteries[J]. Auto Time, 2023(22): 132-134.
[17] 马先润, 张连春, 王晓萌, 等. 废旧车用锂电池运输包装箱温度场仿真分析与优化设计[J]. 包装工程, 2024, 45(13): 300-307.
MA X R, ZHANG L C, WANG X M, et al.Simulation Analysis and Optimization Design of Temperature Field of Used Lithium Battery Transport Packaging Boxes for Vehicles[J]. Packaging Engineering, 2024, 45(13): 300-307.