有毒化学品自降解的选择透过式聚合物膜

殷妮, 袁祖培, 唐俊雄, 胡昊轩, 唐国庆, 陈勃旭, 廖景文, 张玲, 林镇强, 侯鑫, 钟近艺

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 322-329.

PDF(10396 KB)
PDF(10396 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 322-329. DOI: 10.19554/j.cnki.1001-3563.2025.11.035
装备防护

有毒化学品自降解的选择透过式聚合物膜

  • 殷妮, 袁祖培, 唐俊雄, 胡昊轩, 唐国庆, 陈勃旭, 廖景文, 张玲, 林镇强, 侯鑫, 钟近艺
作者信息 +

Permselective Composite Membrane for the Self-degradation of Toxic Chemicals

  • YIN Ni, YUAN Zupei, TANG Junxiong, HU Haoxuan, TANG Guoqing, CHEN Boxu, LIAO Jingwen, ZHANG Ling, LIN Zhenqiang, HOU Xin, ZHONG Jinyi
Author information +
文章历史 +

摘要

目的 开发一种既具备防护性能又兼顾舒适性的聚合物膜,同时能够实现有毒化学品自降解。方法 通过苯乙烯磺酸钠(Sodium p-styrene sulfonate,SSS)接枝聚偏二氟乙烯-co-六氟丙烯(PVDF-co-HFP,PH),制备出磺化共聚物(PH-SSS)。考察不同SSS添加量对防护性能、透湿性能的影响,平衡防护性能和透湿性能,优化出最佳质量比(m(PH)∶m(SSS)=5∶3)。为了解决后续清理和环境污染问题,膜材料加入MOF-808实现自降解功能。结果 PH-SSS的MOF添加量为15%,其防护性能大于8 h,透湿量为4 000 g/(m2·24 h),2-CEES未检测出,DMMP降解率达到98.2%。结论 本工作通过PH的磺酸化以及调节磺酸化程度制备出防护性能与透湿性能平衡的聚合物膜,并且引入MOF-808制成具有防护功能、透湿性能以及有毒化学品自降解的选择透过式聚合物膜PH-SSS-MOF。

Abstract

The work aims to fabricate a polymer membrane that provides protective performance and moisture permeability and facilitates the self-degradation of toxic chemicals at the same time. PH-SSS was prepared by sodium styrene sulfonate (SSS) grafting with PVDF-co-HFP (PH). The effect of different SSS contents on the protective performance and the moisture permeability was investigated. The optimal quality ratio (PH:SSS=5:3) was adjusted to harmonize the protective performance with the moisture permeability. In order to address subsequent cleanup and environmental pollution issues, MOF-808 was added to PH-SSS to achieve self-degradation function (2-CEES was not detected, DMMP degradation rate was 98.2 %), while the duration of protective performance was more than 8 h, and the moisture permeability was 4 000 g/(m2·24 h). A polymer membrane with balanced protective performance and moisture permeability is developed by precisely regulating the degree of SSS. Additionally, by incorporating MOF-808, the permselective polymer membrane (PH-SSS-MOF) is successfully fabricated, which integrates three key functions of protective performance, moisture permeability, and self-degradation of toxic chemicals.

关键词

防护 / 透湿 / 选择透过式 / 有毒化学品自降解

Key words

protective performance / moisture permeability / permselective / self-degradation of toxic chemicals

引用本文

导出引用
殷妮, 袁祖培, 唐俊雄, 胡昊轩, 唐国庆, 陈勃旭, 廖景文, 张玲, 林镇强, 侯鑫, 钟近艺. 有毒化学品自降解的选择透过式聚合物膜[J]. 包装工程(技术栏目). 2025, 46(11): 322-329 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.035
YIN Ni, YUAN Zupei, TANG Junxiong, HU Haoxuan, TANG Guoqing, CHEN Boxu, LIAO Jingwen, ZHANG Ling, LIN Zhenqiang, HOU Xin, ZHONG Jinyi. Permselective Composite Membrane for the Self-degradation of Toxic Chemicals[J]. Packaging Engineering. 2025, 46(11): 322-329 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.035
中图分类号: TB43   

参考文献

[1] TOADER G, GINGHINA R E, DIACON A, et al.Design and Application of Photocrosslinkable Hydrogel Films for Fast and Efficient Decontamination of Chemical Warfare Agents[J]. ACS Applied Polymer Materials, 2023, 5(1): 877-891.
[2] 郭玥婷, 雷美玲, 陈文明, 等. 纳米金属氧化物在化学战剂洗消方面的研究进展[J]. 材料导报, 2022, 36(11): 71-80.
GUO Y T, LEI M L, CHEN W M, et al.Research Progress of Nano Metal Oxides in Decontamination of Chemical Warfare Agents[J]. Materials Reports, 2022, 36(11): 71-80.
[3] 赵越. 微相分离选择透过膜复合材料的制备与防毒机理研究[D]. 北京: 军事科学院, 2021: 16-30.
ZHAO Y.Preparation and Chemical Defense Mechanism of Permselective Composite Membrane Based on Microphase Separation Structure[D]. Beijing: Academy of Military Science, 2021: 16-30.
[4] 阎迪, 郝爱萍. 功能性防护服及新材料应用[J]. 棉纺织技术, 2012, 40(2): 65-68.
YAN D, HAO A P.Functional Protective Clothing and New Material Application[J]. Cotton Textile Technology, 2012, 40(2): 65-68.
[5] 李瑞欣, 张西正, 郭勇, 等. 高透湿性生物防护服的研制[J]. 中国个体防护装备, 2007(2): 9-12.
LI R X, ZHANG X Z, GUO Y, et al.Preparation and Property of Biological Protective Clothing[J]. China Personal Protective Equipment, 2007(2): 9-12.
[6] 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(7): 207-216.
LI C F, LIU Y J, ZHAO X M.Research Progress of Biochemical Protective Clothing[J]. Journal of Textile Research, 2022, 43(7): 207-216.
[7] 刘浩克. 高阻隔透湿纳米纤维膜的制备及其化学防护应用研究[D]. 上海: 东华大学, 2022.
LIU H K.Preparation of High Barrier and High Moisture Permeable Nanofiber Membrane for Chemical Protection[D]. Shanghai: Donghua University, 2022.
[8] PRIYANKA P, DIXIT A, MALI H S.High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. a Review[J]. Mechanics of Composite Materials, 2017, 53(5): 685-704.
[9] ECONDI S, CASELLI A, MARCHESI S, et al.Catalysis and Decontamination: A Versatile Tool in the Safe and Sustainable Degradation of Chemical Warfare Agents[J]. The European Physical Journal Plus, 2024, 139(9): 782.
[10] BODDAERT M, BAPTISTA DA SILVA V, MANSOUR S, et al. Oxidative Neutralisation of Sulfur-Based Chemical Warfare Agents Mediated by a Lipase: From Batch to Flow Reactor[J]. Chemistry-A European Journal, 2025, 31(19): e202403701.
[11] GAO A P, LI H L, CAO X H.Advances in Polyoxometalate-Based Catalysts for Catalytic Decontamination of Nerve Agents[J]. Journal of Cluster Science, 2024, 36(1): 24.
[12] LEE H M, KIM J H, KIM B J.Effects of Electron Beam Irradiation on Dimethyl Methlyphosphonate Adsorption Behavior of Activated Carbon Fibers[J]. Energy Conversion and Management, 2024, 314: 118641.
[13] ROZSYPAL T, FINGER V, PEJCHAL J, et al.Dissipation of Sarin, Soman, and Sulfur Mustard from Various Types of Crushed Concrete[J]. Journal of Hazardous Materials, 2025, 488: 137495.
[14] LEJEUNE K E, WILD J R, RUSSELL A J.Nerve Agents Degraded by Enzymatic Foams[J]. Nature, 1998, 395(6697): 27-28.
[15] BARBOSA J, JANSSEN C R, NEYTS M, et al.Evaluating the Toxicity of Sea-Dumped Conventional and Chemical Munition Degradation Products to Fish and Human Cells Using a Combination of Cell Viability Assays[J]. Ecotoxicology and Environmental Safety, 2025, 291: 117867.
[16] JIAO L, SEOW J Y R, SKINNER W S, et al. Metal-Organic Frameworks: Structures and Functional Applications[J]. Materials Today, 2019, 27: 43-68.
[17] CHEN Y W, ZHANG X, MIAN M R, et al.Structural Diversity of Zirconium Metal-Organic Frameworks and Effect on Adsorption of Toxic Chemicals[J]. Journal of the American Chemical Society, 2020, 142(51): 21428-21438.
[18] TAO C G, ZHAO S Y, LI Y J, et al.Two-Dimensional Metal-Organic Framework Nanostructures and Their Composites in Chemical Warfare Agent Detoxification: A Review[J]. Crystals, 2025, 15(2): 182.
[19] MONDOL M M H, PARK J M, JHUNG S H. A Remarkable Adsorbent for Denitrogenation of Liquid Fuel: Ethylenediaminetetraacetic Acid-Grafted Metal-Organic Framework, MOF-808[J]. Separation and Purification Technology, 2022, 284: 120248.
[20] YAN Z S, LIU X Y, DING B, et al.Interfacial Engineered Superelastic Metal-Organic Framework Aerogels with Van-Der-Waals Barrier Channels for Nerve Agents Decomposition[J]. Nature Communications, 2023, 14: 2116.
[21] LIU T M, LIU T Y, HUANG H, et al.Metal-Organic Framework Incorporated Polybenzimidazole Aerogel Fibers with Dual Protections for Thermal Hazards and Chemical Warfare Agents[J]. Chemical Engineering Journal, 2024, 497: 154590.

基金

军队科研项目(0701-234702130347); 广东省基础与应用基础研究基金(2025A1515010974)

PDF(10396 KB)

Accesses

Citation

Detail

段落导航
相关文章

/