目的 针对公路运输共振引起精密仪器内部元器件失效问题,以精密仪器减振运输系统减振支架为研究对象,利用仿真分析和模态试验法开展支架关键部件旋转云台结构对模态的显著性分析,确定约束共振状态的优化方案。方法 首先对整体模型进行静力学仿真分析,找到其应力集中部位。其次,在模态分析模块中得出前6阶固有频率。最后,通过调整旋转云台支撑支架的边界条件,对原模型的振型进行约束优化。结果 优化后减振支架的初始固有频率由6.1 Hz提高到13.3 Hz,避免了运输系统的共振频率落在外部激励频率范围。结论 优化后减振支架设计具备一定的强度和恰当的模态特性,能够稳定运行,满足避开公路运输激励频率范围,实现对精密仪器的有效减振。本文分析结果为改进公路运输装置减振设计、提高其工作稳定性提供了依据。
Abstract
In order to solve the problem of internal component failure in precision instruments caused by resonance during road transportation, the work aims to take the vibration reduction bracket of the precision instrument vibration reduction transportation system as the research object and employ simulation analysis and modal testing methods to conduct a significance analysis on the modal properties affected by the rotating platform structure, a key component of the bracket, so as to determine the optimization plan for constraining the resonance state. Firstly, the static simulation analysis was carried out to the entire model to identify the stress concentration areas. Subsequently, the first six natural frequencies were obtained from the modal analysis module. Finally, by adjusting the boundary conditions of the support bracket, the vibration modes of the original model were optimized. The initial natural frequency of the vibration reduction bracket increased from 6.1 Hz to 13.3 Hz after optimization, thereby avoiding the resonance frequency of the transportation system from falling within the external excitation frequency range. The optimized vibration reduction bracket design has sufficient strength and appropriate modal characteristics, ensuring stable operation and effectively avoiding the excitation frequency range of road transportation. This achieves effective vibration reduction for precision instruments. The analysis results of this study provide a basis for improving the vibration reduction design of road transportation devices and enhancing their operational stability.
关键词
精密仪器 /
减振运输 /
仿真分析 /
设备改进
Key words
precision instruments /
vibration reduction transportation /
simulation analysis /
equipment improvement
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 温海焜, 宫雪非, 杜福嘉, 等. 南极内陆精密仪器运输减振设计与测试[J]. 振动与冲击, 2015, 34(24): 98-103.
WEN H K, GONG X F, DU F J, et al.Vibration Attenuation Design and Test for Precise Instruments during Antarctic Inland Transport[J]. Journal of Vibration and Shock, 2015, 34(24): 98-103.
[2] 孙颖, 杨小俊. 基于质心偏移下精密仪器包装振动频率的试验与仿真分析[J]. 包装与食品机械, 2022, 40(4): 101-106.
SUN Y, YANG X J.Experiment and Simulation Analysis of Packaging Vibration Frequency of Precision Instrument Based on Centroid Shift[J]. Packaging and Food Machinery, 2022, 40(4): 101-106.
[3] 王哲, 马力, 孙秋凤. 新型精密仪器半挂运输车牵引悬置装置设计[J]. 武汉理工大学学报(信息与管理工程版), 2014, 36(5): 645-648.
WANG Z, MA L, SUN Q F.Suspension Design of New Semi-Trailer Truck Towing for Precision Equipment[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2014, 36(5): 645-648.
[4] 姚涛, 段国林, 蔡瑾. 圆锯片噪声与振动特性及降噪技术研究综述[J]. 振动与冲击, 2008, 27(6): 162-166.
YAO T, DUAN G L, CAI J.Review of Vibration Characteristics and Noise Reduction Technique of Circular Saws[J]. Journal of Vibration and Shock, 2008, 27(6): 162-166.
[5] 黄新忠, 赵俊生. 基于ANSYS的压气机叶轮振动特性有限元仿真分析[J]. 机械设计与制造, 2012(2): 12-14.
HUANG X Z, ZHAO J S.Vibration Characteristic Simulation and Analysis of Compressor Impeller Based on Finite Element[J]. Machinery Design & Manufacture, 2012(2): 12-14.
[6] 谢苗, 闫江龙, 毛君, 等. 采煤机截割部振动特性分析[J]. 机械强度, 2017, 39(2): 254-260.
XIE M, YAN J L, MAO J, et al.Analysis of Vibration Characteristics of Shearer Cutting Unit[J]. Journal of Mechanical Strength, 2017, 39(2): 254-260.
[7] 宋燕利, 徐勤超, 徐峰祥, 等. 考虑振动特性的钢铝复合车架多学科优化[J]. 中国机械工程, 2019, 30(7): 846-851.
SONG Y L, XU Q C, XU F X, et al.Multidisciplinary Optimization for Steel-Aluminum Composite Frames Considering Vibration Characteristics[J]. China Mechanical Engineering, 2019, 30(7): 846-851.
[8] 薛阳, 宋卫生. 包装件随机振动时域响应和PSD快速获取方法研究[J]. 绿色包装, 2023(12): 35-39.
XUE Y, SONG W S.Study on Fast Method for Obtaining Time Domain Response and PSD of Random Vibration of Packages[J]. Green Packaging, 2023(12): 35-39.
[9] 强宝民, 王江波. 货物在公路运输中减振性能的综合评价模型[J]. 包装工程, 2017, 38(13): 72-77.
QIANG B M, WANG J B.Comprehensive Evaluation Model for Damping Property of Goods in Highway Transportation[J]. Packaging Engineering, 2017, 38(13): 72-77.
[10] 刘宇泽. 基于车载运输平台减振系统设计与仿真研究[D]. 阜新: 辽宁工程技术大学, 2023.
LIU Y Z.Design and Simulation of Vibration Reduction System Based on Vehicle Transport Platform[D]. Fuxin: Liaoning Technical University, 2023.
[11] 孙德强, 石威, 李彬, 等. 基于Ansys Workbench的投影仪运输包装仿真分析[J]. 包装工程, 2021, 42(9): 11-16.
SUN D Q, SHI W, LI B, et al.Simulation Analysis of Projector Transport Packaging Based on Ansys Workbench[J]. Packaging Engineering, 2021, 42(9): 11-16.
[12] 朱凯凯, 罗建国, 傅爱军, 等. 某车型减速器壳体模态分析与试验验证[J/OL]. 广西科技大学学报, 2025: 1-12(2025-03-03). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=GXGX20250303001&dbname=CJFD&dbcode=CJFQ
[13] ZHU K K, LUO J G, FU A J, et al. Modal Analysis and Test Verification of a Reducer Housing[J/OL]. Journal of Guangxi University of Science and Technology, 2025: 1-12(2025-03-03). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=GXGX20250303001&dbname=CJFD&dbcode=CJFQ
[14] 李其朋, 吴涛, 许骏翔. 基于ABAQUS的新燃料运输容器橡胶减振器优化设计[J]. 包装工程, 2024, 45(21): 15-21.
LI Q P, WU T, XU J X.Optimization of Rubber Shock Absorber Based on ABAQUS Software for New Fuel Transport Container[J]. Packaging Engineering, 2024, 45(21): 15-21.
[15] 谭滔, 韦凯, 石健松, 等. 服役状态下边界约束优化的弹条固有频率提升研究[J/OL]. 铁道科学与工程学报, 2025: 1-12(2025-03-05). https://link.cnki.net/doi/10.19713/j.cnki.43-1423/u.T20250075.
TAN T, WEI K, SHI J S, et al. Research on Enhancing the Natural Frequency of Fastener Clips through Boundary Constraint Optimization under Service Conditions[J/OL]. Journal of Railway Science and Engineering, 2025: 1-12(2025-03-05). https://link.cnki.net/doi/10.19713/j.cnki.43-1423/u.T20250075.
[16] 李国志, 李元吉, 孙德强, 等. 基于缓冲包装系统的气体采样设备改进设计与验证[J]. 包装工程, 2025, 46(3): 245-252.
LI G Z, LI Y J, SUN D Q, et al.Improved Design and Verification of Gas Sampling Equipment Based on Buffer Packaging System[J]. Packaging Engineering, 2025, 46(3): 245-252.
[17] 曾台英, 于水源. 基于物流运输环境的打印机包装方案分析[J]. 包装工程, 2018, 39(23): 151-157.
ZENG T Y, YU S Y.Printer Packaging Scheme Based on Logistics Transportation Environment[J]. Packaging Engineering, 2018, 39(23): 151-157.
[18] 何鹏飞, 康玲, 余洁冰, 等. 基于ANSYS和Matlab的CSNS/RCS主准直器的运输振动分析[J]. 核技术, 2014, 37(7): 66-73.
HE P F, KANG L, YU J B, et al.Vibration Analysis of CSNS/RCS Primary Collimator in Transportation Based on ANSYS & Matlab[J]. Nuclear Techniques, 2014, 37(7): 66-73.
[19] 王学军, 李厚旭, 韩鹏剑. 三七切片设备振动特性分析[J]. 机械设计, 2025, 42(3): 78-85.
WANG X J, LI H X, HAN P J.Analysis on Vibration Characteristics of Pseudo-Ginseng Slicing Equipment[J]. Journal of Machine Design, 2025, 42(3): 78-85.
[20] 张艳君. 装载机变速器内外部激励分析及振动噪声预估[D]. 重庆: 重庆大学, 2019.
ZHANG Y J.Analysis of Internal-External Excitation and Vibration Noise for a Loader Transmission[D]. Chongqing: Chongqing University, 2019.
基金
广东电网有限责任公司职工技术创新项目(032000KZ24010047)