目的 通过构建多目标优化模型,从而确定最佳的回收中心选址方案,以解决循环包装箱回收中心的选址难题。方法 建立多目标优化模型,以达到最小化成本、碳排放和运输距离的目的。采用人工蜂群算法(ABC)对优化模型进行求解,并采用非支配排序遗传算法 II(NSGA-II)、粒子群优化算法(PSO)和蚁群算法(ACA)作为对比算法,对其在不同侧重点下的性能表现及所得的最优选址方案进行对比分析。结果 ABC算法在均衡性、效率以及全局最优解的搜索能力上均优于另外3种算法,它能够更有效地平衡多目标之间的冲突,从而得出更为理想的选址方案。结论 ABC算法为解决循环包装箱回收中心选址问题提供了更为合理、优越的解决方案,特别是在处理多目标优化问题时表现出色。
Abstract
The work aims to determine the optimal site selection scheme for recycling centers dedicated to reusable packaging boxes by constructing a multi-objective optimization model. The model was developed to minimize cost, carbon emissions, and transportation distance. The Artificial Bee Colony (ABC) algorithm was employed to solve the optimization model, while the Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO), and Ant Colony Algorithm (ACA) were used as benchmark algorithms. A comparative analysis was conducted to evaluate the performance of these algorithms under different priorities and to assess the quality of the resulting site selection schemes. The experimental results demonstrated that the ABC algorithm outperformed the other three algorithms in terms of balance, efficiency, and global search capability. It was more effective in handling trade-offs among multiple objectives, thereby yielding more desirable site selection schemes. The ABC algorithm provides a more rational and superior approach for solving the site selection problem of recycling centers for reusable packaging, particularly excelling in addressing multi-objective optimization challenges.
关键词
循环包装 /
人工蜂群算法 /
回收中心 /
选址 /
多目标
Key words
returnable packaging /
artificial bee colony algorithm /
recycling center /
site selection /
multi-objective
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中华人民共和国交通运输部. 国家邮政局公布2024年邮政行业运行情况[EB/OL]. 北京: 交通运输部, (2025-1-20). [2025-1-20]. https://www.mot.gov.cn/tongjishuju/youzheng/202501/t20250124_4163116.html.
Ministry of Transport of the People's Republic of China & State Post Bureau. Release of the Operational Status of the Postal Industry in2024 [EB/OL]. Beijing: Ministry of Transport, (2025-1-20). [Accessed on 2025-1-20]. https://www.mot.gov.cn/tongjishuju/youzheng/202501/t20250124_4163116.html.
[2] 中华人民共和国国家邮政局. 一图读懂|深入推进快递包装绿色转型行动方案[EB/OL].北京: 国家邮政局, (2023-12-18). [2023-12-18]. https://www.spb.gov.cn/gjyzj/c100200/202312/8c742ae00efa4652a0719f9f57a289ff.shtml.
State Post Bureau of the People's Republic of China. Illustrated Guide | Action Plan for Further Promoting the Green Transformation of Express Packaging [EB/OL]. Beijing: State Post Bureau, (2023-12-18). [Accessed on 2023-12-18]. https://www.spb.gov.cn/gjyzj/c100200/202312/8c742ae00efa4652a0719f9f57a289ff.shtml.
[3] 麻哲瑞. 餐厨垃圾超临界水气化混合建模及系统集成研究[D]. 北京: 华北电力大学, 2024.
MA Z R.Study on Mixed Modeling and System Integration of supercritical water Gasification of Kitchen Waste[D]. Beijing: North China Electric Power University, 2024.
[4] 全国邮政业标准化技术委员会. 邮件快件循环包装使用指南: GB/T 43805—2024[S]. 北京: 中国标准出版社, 2024.
National Technical Committee 462 on Postal Industry of Standardization Administration of China. Guide for the Use of Mail and Express Circulating Package: GB/T 43805—2024[S]. Beijing: Standards Press of China, 2024.
[5] 何燕子, 王江朝. “双碳” 背景下循环包装逆向物流网络模型构建与仿真[J]. 桂林航天工业学院学报, 2023, 28(4): 608-618.
HE Y Z, WANG J C.Construction and Simulation of Circulation Packaging Reverse Logistics Network Model under the Background of Carbon Peaking and Carbon Neutrality Goals[J]. Journal of Guilin University of Aerospace Technology, 2023, 28(4): 608-618.
[6] 秦维嘉, 姚新胜, 杨路路, 等. 城市快递包装回收处理中心选址研究[J]. 物流工程与管理, 2022, 44(8): 50-52.
QIN W J, YAO X S, YANG L L, et al.Research on Location of Urban Express Package Recycling Processing Center[J]. Logistics Engineering and Management, 2022, 44(8): 50-52.
[7] XI Y L, TAO F M, BROOKS S.Optimization of Carton Recycling Site Selection Using Particle Swarm Optimization Algorithm Considering Residents' Recycling Willingness[J]. PeerJ Computer Science, 2023, 9: e1519.
[8] 杨喜文, 郑建风, 邢力元. 基于NSGA-Ⅱ算法的正逆向物流网络中回收处理中心选址[J]. 高技术通讯, 2021, 31(2): 214-222.
YANG X W, ZHENG J F, XING L Y.Location of Recycling Process Centers in a Forward and Reverse Logistics Network Based on NSGA-Ⅱ Algorithm[J]. Chinese High Technology Letters, 2021, 31(2): 214-222.
[9] ZHANG Q Q, CHEN Q.Network Location and Distribution Planning of Packaging Waste Recycling Facilities under Uncertain Demand[C]//2024 IEEE 2nd International Conference on Control, Electronics and Computer Technology (ICCECT). Jilin, China. IEEE, 2024: 498-503.
[10] SICUAIO T, ZHAO P X, PILESJÖ P, et al.A Multi-Objective Optimization Approach for Solar Farm Site Selection: Case Study in Maputo, Mozambique[J]. Sustainability, 2024, 16(17): 7333.
[11] LI R Y, HE M, HE H Y, et al.Heuristic Column Generation for Designing an Express Circular Packaging Distribution Network[J]. Operational Research, 2022, 22(2): 1103-1126.
[12] HU Y J, YANG W S.Reverse Logistics of Municipal Solid Waste—Study on the Location of Transfer Stations[J]. IOP Conference Series: Earth and Environmental Science, 2020, 619(1): 012004.
[13] 王江朝. 快递企业自营物流循环包装回收模式的网络规划研究[D]. 株洲: 湖南工业大学, 2024.
WANG J C.Research on Network Planning of Recycling Mode of Self-Operated Logistics in Express Delivery Enterprises[D]. Zhuzhou: Hunan University of Technology, 2024.
[14] YUAN Y, DONG J R.Research on the Site Selection Model of Express Service Outlets Based on BP Neural Network[J]. Academic Journal of Management and Social Sciences, 2023, 4(3): 132-134.
[15] 程梦丹. 南昌市快递末端配送问题分析及模式研究[D]. 南昌: 南昌大学, 2021.
CHENG M D.Analysis and Model Research on Terminal Delivery of Express Delivery in Nanchang City[D]. Nanchang: Nanchang University, 2021.
[16] 李洋, 张红叶. 可循环快递包装箱及操作系统设计[J]. 物流工程与管理, 2023, 45(5): 30-33.
LI Y, ZHANG H Y.The Design of Recyclable Packaging Express Box and Operating System[J]. Logistics Engineering and Management, 2023, 45(5): 30-33.
[17] 王占丰, 张林杰, 吕博, 等. 基于机器学习的云计算资源调度综述[J]. 无线电通信技术, 2022, 48(2): 213-222.
WANG Z F, ZHANG L J, LYU B, et al.A Survey on Cloud Computing Resource Scheduling Based on Machine Learning[J]. Radio Communications Technology, 2022, 48(2): 213-222.
[18] 张平华, 贾万祥, 程晓蕾. 基于一致分布佳点集改进的交叉人工蜂群算法[J]. 河北北方学院学报(自然科学版), 2022, 38(1): 13-20.
ZHANG P H, JIA W X, CHENG X L.Improved Cross Artificial Bee Colony Algorithm Based on Uniform Distribution Good Point Set[J]. Journal of Hebei North University (Natural Science Edition), 2022, 38(1): 13-20.
[19] 李苹. 基于RFID技术的快递循环包装回收/调拨网络优化研究[D]. 北京: 北京印刷学院, 2018.
LI P.Research on Optimization of Recycling/Allocation Network of Express Circulation Packaging Based on RFID Technology[D]. Beijing: Beijing Institute of Graphic Communication, 2018.
基金
北京市教委-市自然基金委联合资助项目(KZ202210015020); 北京印刷学院科研平台建设项目(KYCPT202507)