目的 针对行走式火车棚车装车机车架的质量冗余问题,提出一种多目标优化方法,以实现轻量化与结构力学性能的协同优化。方法 基于2种极限工况的静力学分析,通过灵敏度分析识别关键部件,并利用Kriging模型构建几何质量、一阶固有频率、最大变形量和应力的多目标响应面,结合NSGA-Ⅱ算法优化,获得Pareto最优解集。结果 对优化后车架进行仿真分析,发现几何质量降低了22.93%,最大应力下降了9.5%,一阶固有频率稳定在20 Hz,关键工况最大变形量稳定在14 mm以内。结论 该方法可保证装车机结构力学性能的前提下显著降低装车机的几何质量。
Abstract
Considering the mass redundancy problem of the walking loader frame for the train shed, the work aims to propose a multi-objective optimization method to realize the synergistic optimization of lightweight and structural mechanical performance. Based on the static analysis of two extreme working conditions, the key components were identified through sensitivity analysis, and the multi-objective response surfaces of geometric mass, first-order intrinsic frequency, maximum deformation and stress were constructed by the Kriging model and then optimized combined with the NSGA-II algorithm to obtain the optimal solution set of Pareto. Simulation analysis of the optimized frame revealed that the geometric mass was reduced by 22.93%, the maximum stress decreased by 9.5%, the first-order intrinsic frequency stabilized at 20 Hz, and the maximum deformation stabilized within 14 mm under the critical working conditions. This method can significantly reduce the geometric mass of the loader under the premise of ensuring the structural mechanical performance of the loader.
关键词
行走式装车机 /
kriging模型 /
灵敏度分析 /
多目标优化
Key words
walking loader /
Kriging model /
sensitivity analysis /
multi-objective optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CRAMER W, MANG C, MCDONNELL A, et al.The Impact of Automation on Shipping and Receiving Operations[C]//Proceedings of the International Annual Conference of the American Society for Engineering Management. American Society for Engineering Management (ASEM), 2020: 1-7.
[2] SCHNATHMANN R .Automatic Loading and Palletising with the Beumer Autopac[J]. ZKG Cement Lime Gypsum, 2021(3): 74.
[3] 邓原胜. 移动式多功能装卸机的研究与设计[D]. 武汉: 华中科技大学, 2017.
DENG Y S.Research and Design of a Mobile Multifunctional Loading and Unloading Machine[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[4] 黄大伟, 郭成荣, 傅爱军, 等. 基于多工况的畜禽运输车车厢骨架优化设计[J]. 中国农机化学报, 2023, 44(10): 137-143.
HUANG D W, GUO C R, FU A J, et al.Optimization Design of the Carriage Frame of a Livestock and Poultry Transport Vehicle Based on Multiple Working Conditions[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(10): 137-143.
[5] 邱绪云, 刘佳奇, 高琦, 等. 基于Kriging近似模型的果园作业机车架结构参数优化设计[J]. 中国农机化学报, 2023, 44(11): 93-101.
QIU X Y, LIU J Q, GAO Q, et al.Optimization Design of Frame Structure Parameters of Orchard Operating Machine Based on Kriging Approximate Model[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(11): 93-101.
[6] ZHANG J, DENG Y X, ZHENG B, et al.Lightweight Design of Low-Load Electric Vehicle Frame[J]. Journal of Computational Methods in Sciences and Engineering, 2021, 21(2): 423-433.
[7] HE Q, LI X N, MAO W J, et al.Research on Vehicle Frame Optimization Methods Based on the Combination of Size Optimization and Topology Optimization[J]. World Electric Vehicle Journal, 2024, 15(3): 107.
[8] JOHANSSON A, LARSON M G, LOGG A.Multimesh Finite Elements with Flexible Mesh Sizes[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113420.
[9] 赵升起, 陈泽中. 基于HyperMesh网格检查与修补的二次开发[J]. 软件, 2023, 44(4): 123-130.
ZHAO S Q, CHEN Z Z.Secondary Development of Mesh Inspection and Repair Based on HyperMesh[J]. Software, 2023, 44(4): 123-130.
[10] 林玉龙, 武德浩, 晋龙飞. 含呼吸裂纹的车架结构模态分析[J]. 机械设计与研究, 2025, 41(1): 212-220.
LIN Y L, WU D H, JIN L F.Modal Analysis of Frame Structure with Breathing Cracks[J]. Machine Design & Research, 2025, 41(1): 212-220.
[11] 贺泰雄, 王剑, 王兆明, 等. 大轴重货车车体结构改进与优化设计[J]. 铁道机车车辆, 2024, 44(6): 73-81.
HE T X, WANG J, WANG Z M, et al.Structural Improvement and Optimal Design of Large Axle Load Freight Carbody[J]. Railway Locomotive & Car, 2024, 44(6): 73-81.
[12] 潘英广, 唐清春, 袁秀坤, 等. 基于Kriging模型的主轴箱多目标尺寸优化[J]. 广西科技大学学报, 2024, 35(2): 78-86.
PAN Y G, TANG Q C, YUAN X K, et al.Multi-Objective Size Optimization of Headstock Based on Kriging Model[J]. Journal of Guangxi University of Science and Technology, 2024, 35(2): 78-86.
[13] 李延民, 王景玉, 邵景干, 等. 基于响应面法的60MN压剪试验机上横梁优化设计[J]. 机械设计与制造, 2024(7): 173-177.
LI Y M, WANG J Y, SHAO J G, et al.Optimal Design of Upper Beam of 60MN Compression-Shear Testing Machine Based on Response Surface Method[J]. Machinery Design & Manufacture, 2024(7): 173-177.
[14] 高建平. 基于代理模型的FSC赛车车架轻量化研究[D]. 钦州: 北部湾大学, 2024.
GAO J P.Research on Lightweight FSC Racing Frame Based on Proxy Model[D]. Qinzhou: Beibuwan University, 2024.
[15] 王钊, 魏鑫, 黄瑶, 等. 基于响应面的汽车中立柱内板影响因素多目标优化[J]. 锻压技术, 2020, 45(7): 46-50.
WANG Z, WEI X, HUANG Y, et al.Multi-Objective Optimization on Influencing Factors for Central Pillar Inner Plate of Automobile Based on Response Surface[J]. Forging & Stamping Technology, 2020, 45(7): 46-50.
[16] 姜立标, 莫晓昊, 颜琳崧. 采用折衷规划法的客车车架多目标优化研究[J]. 汽车实用技术, 2024, 49(14): 51-56.
JIANG L B, MO X H, YAN L S.Research on Multi-Objective Optimization of Coach Frame Using Compromise Programming Method[J]. Automobile Applied Technology, 2024, 49(14): 51-56.
[17] 董兵, 贾姗. 基于熵权法的卷烟品牌动态管理模型构建及实例[J]. 现代商贸工业, 2025, 46(8): 94-98.
DONG B, JIA S.Construction and Example of Dynamic Management Model of Cigarette Brand Based on Entropy Weight Method[J]. Modern Business Trade Industry, 2025, 46(8): 94-98.
基金
国家“十四五”重点研发计划(2022YFD2100200)