涂布机烘箱云制造服务组合优化方法研究

李征, 朱浪泽, 冯磊, 刘善慧

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 185-194.

PDF(4911 KB)
PDF(4911 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 185-194. DOI: 10.19554/j.cnki.1001-3563.2025.11.020
自动化与智能化技术

涂布机烘箱云制造服务组合优化方法研究

  • 李征, 朱浪泽, 冯磊, 刘善慧
作者信息 +

Cloud Manufacturing Service Composition Optimization Method of Coater Oven

  • LI Zheng, ZHU Langze, FENG Lei, LIU Shanhui
Author information +
文章历史 +

摘要

目的 针对涂布机烘箱生产装配效率低、跨域协同能力不足的问题,本文提出基于改进麻雀搜索算法的涂布烘箱云制造服务组合优化方法,旨在提升烘箱制造生产效率与产业协同水平。方法 首先系统梳理烘箱零件结构与零件制造子任务分解体系,其次构建融合服务质量与综合能耗的双目标烘箱制造服务组合优化数学模型,最后提出基于多种改进策略的麻雀搜索算法,实现模型的高效求解,获取最优制造服务组合。结果 在包含10个子任务的烘箱云制造服务组合优化实例中,所提方法得到的最优组合服务质量较次优算法平均提升了8.47%;基准函数性能测试显示,其优化效果较次优算法提升了约19.25%。结论 基准函数与不同规模的真实案例的实验结果验证了本文模型与方法在解决烘箱云制造服务组合优化问题上的可行性与优越性,能有效提升烘箱制造的生产效率与产业协同能力。

Abstract

The work aims to present an optimized cloud manufacturing service composition approach for coater ovens based on an improved sparrow search algorithm, to address the low production and assembly efficiency of coater ovens and insufficient cross-domain collaboration capabilities and improve the production efficiency and industrial collaboration capabilities in oven manufacturing. The research systematically sorted out the structure of oven parts and the decomposition system of parts manufacturing sub-tasks, and established a two-objective optimization model integrating service quality and comprehensive energy consumption. An enhanced sparrow search algorithm incorporating multiple improvement strategies was then proposed to achieve efficient model solving and obtain the optimal manufacturing service composition. Experimental results demonstrated that in a cloud manufacturing service composition optimization case involving 10 subtasks, the optimal solution achieved an average service quality improvement of 8.47% compared with suboptimal algorithms. Benchmark function performance tests showed an approximately 19.25% improvement in optimization effectiveness. These results validate the feasibility and superiority of the proposed model and method in solving coater oven cloud manufacturing service composition optimization problems, effectively enhancing production efficiency and industrial collaboration capabilities in oven manufacturing.

关键词

涂布机 / 烘箱 / 云制造 / 组合优化 / 麻雀搜索算法

Key words

coater / oven / cloud manufacturing / composition optimization / sparrow search algorithm(SSA)

引用本文

导出引用
李征, 朱浪泽, 冯磊, 刘善慧. 涂布机烘箱云制造服务组合优化方法研究[J]. 包装工程(技术栏目). 2025, 46(11): 185-194 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.020
LI Zheng, ZHU Langze, FENG Lei, LIU Shanhui. Cloud Manufacturing Service Composition Optimization Method of Coater Oven[J]. Packaging Engineering. 2025, 46(11): 185-194 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.020
中图分类号: TB486    TH164   

参考文献

[1] 卢诗强, 常一凡, 林勤保, 等. 食品接触用水性涂布纸中半挥发性迁移物的筛查及安全评估[J]. 包装工程, 2024, 45(11): 145-152.
LU S Q, CHANG Y F, LIN Q B, et al.Screening and Safety Assessment of Semi-Volatile Migrants from Water-Borne Coated Paper for Food Contact[J]. Packaging Engineering, 2024, 45(11): 145-152.
[2] 程千驹, 贺四清, 胡泓, 等. 锂电池涂布烘箱风嘴射流压强分布优化研究[J]. 包装工程, 2019, 40(5): 180-186.
CHENG Q J, HE S Q, HU H, et al.Jet Pressure Distribution Optimization in Air Nozzle of Lithium Battery Coating Oven[J]. Packaging Engineering, 2019, 40(5): 180-186.
[3] 李伯虎, 张霖, 王时龙, 等. 云制造——面向服务的网络化制造新模式[J]. 计算机集成制造系统, 2010, 16(1): 1-7.
LI B H, ZHANG L, WANG S L, et al.Cloud Manufacturing: A New Service-Oriented Networked Manufacturing Model[J]. Computer Integrated Manufacturing Systems, 2010, 16(1): 1-7.
[4] JING W P, ZHAO C Y, MIAO Q C, et al.QoS-DPSO: QoS-Aware Task Scheduling for Cloud Computing System[J]. Journal of Network and Systems Management, 2020, 29(1): 5.
[5] GAO J, YAN X G, GUO H.A Discrete Manufacturing SCOS Framework Based on Functional Interval Parameters and Fuzzy QoS Attributes Using Moving Window FPA[J]. Concurrent Engineering-Research and Applications, 2022, 30(1): 46-66.
[6] YUAN M H, ZHOU Z, CAI X X, et al.Service Composition Model and Method in Cloud Manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101840.
[7] 王彦凯, 王时龙, 杨波, 等. 一种实际多约束环境下的云制造服务组合动态自适应重构方法[J]. 机械工程学报, 2023, 59(14): 339-351.
WANG Y K, WANG S L, YANG B, et al.Dynamic Adaptive Reconfiguration Method for Cloud Manufacturing Service Composition in Practical Multi-Constraint Environment[J]. Journal of Mechanical Engineering, 2023, 59(14): 339-351.
[8] CHEN C, YU J J, LU J Y, et al.Service Composition and Optimal Selection of Low-Carbon Cloud Manufacturing Based on NSGA-II-SA Algorithm[J]. Processes, 2023, 11(2): 340.
[9] SEGHIR F.FDMOABC: Fuzzy Discrete Multi-Objective Artificial Bee Colony Approach for Solving the Non-Deterministic QoS-Driven Web Service Composition Problem[J]. Expert Systems with Applications, 2021, 167: 114413.
[10] 尹超, 许加晟, 李孝斌. 基于NSGA-Ⅲ算法的云制造服务组合优选方法[J]. 计算机集成制造系统, 2022, 28(4): 1164-1176.
YIN C, XU J S, LI X B.NSGA-Ⅲ Based Service Composition Optimization Method in Cloud Manufacturing[J]. Computer Integrated Manufacturing Systems, 2022, 28(4): 1164-1176.
[11] 胡强, 田雨晴, 綦浩泉, 等. 基于改进人工蜂群算法的云制造服务组合优化方法[J]. 通信学报, 2023, 44(1): 200-210.
HU Q, TIAN Y Q, QI H Q, et al.Optimization Method for Cloud Manufacturing Service Composition Based on the Improved Artificial Bee Colony Algorithm[J]. Journal on Communications, 2023, 44(1): 200-210.
[12] WANG Y K, GAO S, WANG S L, et al.An Adaptive Multiobjective Multitask Service Composition Approach Considering Practical Constraints in Fog Manufacturing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 6756-6766.
[13] LI Y X, YAO X F, LIU M.Multiobjective Optimization of Cloud Manufacturing Service Composition with Improved Particle Swarm Optimization Algorithm[J]. Mathematical Problems in Engineering, 2020(1): 9186023.
[14] HAI Y, XU X, LIU Z Z.Dynamic Multi-Objective Service Composition Based on Improved Social Learning Optimization Algorithm[J]. Applied Soft Computing, 2024, 167: 112266.
[15] ABDEL-BASSET M, MOHAMED R, ABDEL AZEEM S A, et al. Kepler Optimization Algorithm: A New Metaheuristic Algorithm Inspired by Kepler's Laws of Planetary Motion[J]. Knowledge-Based Systems, 2023, 268: 110454.
[16] 郁清. 基于改进麻雀算法的云制造服务组合优化[D]. 南京: 南京邮电大学, 2023: 24-63.
YU Q.Optimization of Cloud Manufacturing Service Composition Based on Improved Sparrow Algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2023: 24-63.
[17] YUE Y G, CAO L, LU D W, et al.Review and Empirical Analysis of Sparrow Search Algorithm[J]. Artificial Intelligence Review, 2023, 56(10): 10867-10919.
[18] 李孝斌, 熊昌, 尹超, 等.考虑能耗和服务组合柔性的云制造服务组合方法[J/OL]. 计算机集成制造系统, 2024: 1-21(2024-09-26). https://doi.org/10.13196/j.cims.2024.0016.
LI X B, XIONG C, YIN C, et al.Cloud Manufacturing Service Composition Optimization Method Considering the Energy Consumption and Service Flexibility[J/OL]. Computer Integrated Manufacturing Systems, 2024: 1-21(2024-09-26). https://doi.org/10.13196/j.cims.2024.0016.

基金

国家重点研发计划项目(2023YFB3308800); 渭南市重点研发计划项目(2024ZDYFJH-767)

PDF(4911 KB)

Accesses

Citation

Detail

段落导航
相关文章

/