TOPSIS法综合评价黄精的不同加工方式

王鑫, 杨晨曦, 张一鹏, 史昕鸿, 杨梦媛, 马永强

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 158-167.

PDF(859 KB)
PDF(859 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 158-167. DOI: 10.19554/j.cnki.1001-3563.2025.11.017
农产品保鲜与食品包装

TOPSIS法综合评价黄精的不同加工方式

  • 王鑫, 杨晨曦, 张一鹏, 史昕鸿, 杨梦媛, 马永强
作者信息 +

TOPSIS Comprehensive Evaluation of Different Processing Methods of Polygonatum Sibiricum

  • WANG Xin, YANG Chenxi, ZHANG Yipeng, SHI Xinhong, YANG Mengyuan, MA Yongqiang
Author information +
文章历史 +

摘要

目的 黄精是近年来被广泛关注的药食同源植物,为了降低加工过程给黄精产品品质带来的负面影响,将它在九蒸九制、热风烘干、真空冷冻、微波干燥等4种加工过程中的有效成分(黄精多糖、黄酮、多酚、皂苷)含量、美拉德反应导致的褐变度、5-羟甲基糠醛含量、黄精多糖体外降糖能力作为评价指标,构建多元指标的黄精加工方式评价体系,利用TOPSIS综合评价法评价黄精的不同加工方式,探究黄精的最佳加工方式。方法 采用熵权法对评价指标赋权,在加工过程中黄精受影响程度最大的3个指标为黄精多糖(16.23%)、褐变度(14.82%)、多糖降血糖能力(α-淀粉酶13.03%,α-葡萄糖苷酶14.65%)。经九蒸九制后,黄精的多糖降血糖能力最好。结果 在黄精的多糖质量浓度为10 mg/mL时,对α-淀粉酶的抑制率为55.89%,对α-葡萄糖苷酶的抑制率为45.03%。结论 对九蒸九制、热风烘干、真空冷冻、微波干燥等4种加工方式进行了综合评价,综合评分排序依次为真空冷冻、九蒸九制、微波干燥、热风烘干。该结论为依据黄精不同应用需求(如药用价值保留、营养成分维持、工业化生产效率等)精准选择加工工艺提供了量化参考,同时也为降低黄精加工过程中的有效成分损耗、提升资源利用价值提供了科学依据。

Abstract

Polygonatum sibiricumt is a homologous plant of medicine and food that has been widely concerned in recent years. The work aims to reduce the negative impact of the processing process on the quality of the product. Aiming at the changes in the content of active components of Polygonatum sibiricum polysaccharide, flavonoids, polyphenols and saponins, the degree of browning and 5-hydroxymethylfurfural content caused by Maillard reaction, and the in vitro hypoglycemic ability of Polygonatum sibiricum polysaccharide in the four processing processes of nine steaming-nine processing, hot-air drying, vacuum freezing and microwave drying, the evaluation system of polygonum flavinans is constructed with multiple indexes. TOPSIS comprehensive evaluation method is used to evaluate the different processing methods of Polygonatum sibiricum, and to explore the best processing methods of Polygonatum sibiricum. The entropy weight method was used to weight the evaluation indexes. The three indexes that were most affected in the processing were: polysaccharide 16.23%, browning degree 14.82%, and the hypoglycemic effect of polysaccharide (α-amylase 13.03%, α-glucosidase 14.65%). The glucose-lowering ability of Polygonatum sibiricum polysaccharide was the best. The inhibition 1rate of α-amylase and α-glucosidase were 55.89% and 45.03% when the mass concentration of polysaccharide was 10 mg/mL. The four processing methods of nine steaming-nine processing, hot air drying, vacuum freezing and microwave drying are comprehensively evaluated. The comprehensive ranking results are vacuum freezing, nine steaming-nine drying, microwave drying and hot air drying. The results of the study provide a basis for the selection of processing techniques for different needs (such as retention of medicinal value, maintenance of nutritional components, and industrial production efficiency, etc.), and provide a reference for reducing the loss of value brought about by the processing of Polygonatum sibiricum.

关键词

黄精 / 加工方式 / TOPSIS / 真空冷冻 / 九蒸九制 / 微波干燥 / 热风烘干

Key words

Polygonatum sibiricum / processing methods / TOPSIS / vacuum freezing / nine steaming-nine processing / microwave drying / hot air drying

引用本文

导出引用
王鑫, 杨晨曦, 张一鹏, 史昕鸿, 杨梦媛, 马永强. TOPSIS法综合评价黄精的不同加工方式[J]. 包装工程(技术栏目). 2025, 46(11): 158-167 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.017
WANG Xin, YANG Chenxi, ZHANG Yipeng, SHI Xinhong, YANG Mengyuan, MA Yongqiang. TOPSIS Comprehensive Evaluation of Different Processing Methods of Polygonatum Sibiricum[J]. Packaging Engineering. 2025, 46(11): 158-167 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.017
中图分类号: TB34   

参考文献

[1] TANG C, YU Y M, QI Q L, et al.Steroidal Saponins from the Rhizome of Polygonatum sibiricum[J]. Journal of Asian Natural Products Research, 2019, 21(3): 197-206.
[2] 孙思宇, 王华磊, 陈松树, 等. 不同品系多花黄精药理和食用成分比较研究[J]. 食品安全质量检测学报, 2022, 13(22): 7272-7278.
SUN S Y, WANG H L, CHEN S S, et al.Comparative Study on Pharmacological and Ediable Components of Different Strains of Polygonatum Polyflora[J]. Journal of Food Safety & Quality, 2022, 13(22): 7272-7278.
[3] 梁朋光, 孙健, 岳健, 等. 响应面优化滇黄精多糖提取及其结构与活性分析[J]. 南方农业学报, 2021, 52(12): 3434-3445.
LIANG P G, SUN J, YUE J, et al.Response Surface Optimization of Extraction and Structure and Activity Analysis of Polysaccharides from Polygonatum Kingianum Coll. et Hemsl[J]. Journal of Southern Agriculture, 2021, 52(12): 3434-3445.
[4] 李健, 王晓梅. 中药提取物对α-葡萄糖苷酶的抑制作用[J]. 长春中医药大学学报, 2011, 27(6): 915-916.
LI J, WANG X M.Inhibitory Effect of Traditional Chinese Medicine Extract on α-Glucosidase[J]. Journal of Changchun University of Traditional Chinese Medicine, 2011, 27(6): 915-916.
[5] 宋晨鸽, 马彦江, 姚超, 等. 九蒸九制何首乌色泽与二苯乙烯苷、蒽醌类成分的相关性分析[J]. 中国医院药学杂志, 2021, 41(8): 783-789.
SONG C G, MA Y J, YAO C, et al.Analysis of the Correlation between the Color of Nine-Steam-Nine-Bask Polygonum Multiflorum Thunb and the Stilbene Glycosides and Anthraquinones[J]. Chinese Journal of Hospital Pharmacy, 2021, 41(8): 783-789.
[6] 张悦, 孔菲菲, 张周菊, 等. 铁皮石斛不同干燥方法的质量对比研究[J]. 湖北中医杂志, 2022, 44(9): 54-58.
ZHANG Y, KONG F F, ZHANG Z J, et al.Comparative Study on Quality of Dendrobium Candidum by Different Drying Methods[J]. Hubei Journal of Traditional Chinese Medicine, 2022, 44(9): 54-58.
[7] 黄夏. 黄精真空冷冻干燥工艺优化研究[J]. 新农业, 2019(11): 11-13.
HUANG X.Optimization of Vacuum Freeze-Drying Technology of Polygonatum Sibiricum[J]. Xin Nongye , 2019(11): 11-13.
[8] 吴丰鹏. 九蒸九制对威海黄精有效成分的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 9-20.
WU F P.Study on the Effect of Nine Steaming and Nine Cooking Systems on the Effective Components of Polygonatum Sibiricum in Weihai[D]. Harbin: Harbin Institute of Technology, 2020: 9-20.
[9] 吴思俊, 王龙, 赵铭威, 等. 中药九蒸九晒炮制技术研究进展[J]. 中南药学, 2022, 20(9): 2015-2022.
WU S J, WANG L, ZHAO M W, et al.Research Progress in Repeatedly Steamed and Sundried of Traditional Chinese Medicine[J]. Central South Pharmacy, 2022, 20(9): 2015-2022.
[10] 陈孟广, 陈莉娟, 余丽慧, 等. 不同九制方法对景宁多花黄精药典指标成分变化影响[J]. 绿色科技, 2020, 22(16): 230-233.
CHEN M G, CHEN L J, YU L H, et al.Effect of Different Nine Preparation Methods on the Changes of Pharmacopoeia Index Components of Polygonatum Cyrtonema[J]. Journal of Green Science and Technology, 2020, 22(16): 230-233.
[11] YAO X, DENG Z, LI H, et al.Effect of Processing Cycles on the Composition of Polygonatum Cyrtonema Hua during Nine-Steam-Nine-Bask Processing[J]. Food Bioscience, 2022, 50: 102081.
[12] 薛蓉, 戴衍朋, 王彬, 等. 中药饮片质量控制标准研究与展望[J]. 中国食品药品监管, 2022(11): 32-41.
XUE R, DAI Y P, WANG B, et al.Research and Prospect on Quality Control Standard of Traditional Chinese Medicine Decoction Pieces[J]. China Food & Drug Administration Magazine, 2022(11): 32-41.
[13] 瞿昊宇, 冯楚雄, 谢梦洲, 等. 不同炮制方法对黄精多糖含量的影响[J]. 湖南中医药大学学报, 2015, 35(12): 53-55.
QU H Y, FENG C X, XIE M Z, et al.Effect of Different Processing Methods on the Content of Polygahatous Polysaccharides[J]. Journal of Hunan University of Chinese Medicine, 2015, 35(12): 53-55.
[14] 万福宝, 辛明亮, 王鑫, 等. 福林酚比色法测定保健食品中茶多酚的含量[J]. 实验与分析, 2023, 1(1): 58-60.
WAN F B, XIN M L, WANG X, et al.Determination of Tea Polyphenols in Health Food by Fluorine Phenol Colorimetry[J]. Experiments and Analysis, 2023, 1(1): 58-60.
[15] 郭信东, 袁小凤, 杨昌贵, 等. 黄精酒制后活性成分的变化研究[J]. 时珍国医国药, 2022, 33(6): 1366-1368.
GUO X D, YUAN X F, YANG C G, et al.Study on the Changes of the Active Ingredients in Polygonatum Sibiricum after the Alcoholic Preparation[J]. Lishizhen Medicine and Materia Medica Research, 2022, 33(6): 1366-1368.
[16] 戴万生, 毕露露, 邱斌, 等. 黄精总皂苷的提取和含量测定方法研究[J]. 云南中医中药杂志, 2023, 44(2): 73-76.
DAI W S, BI L L, QIU B, et al.Study on Extraction and Content Determination of Total Saponins from Polygonatum[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2023, 44(2): 73-76.
[17] 王祉昀, 王云, 李亚贤, 等. 不同干燥方式对复方赤灵芝提取物中5-羟甲基糠醛含量的影响[J]. 现代食品科技, 2023, 39(3): 230-238.
WANG Z Y, WANG Y, LI Y X, et al.Effects of Different Drying Methods on the Content of 5-Hydroxymethylfurfural in Ganoderma Lucidum Extract Mixtures[J]. Modern Food Science and Technology, 2023, 39(3): 230-238.
[18] 李志鹏, 周晨熠, 潘书童, 等. 2种青稞多糖对胰α-淀粉酶的抑制作用[J]. 食品科学, 2023, 44(22): 192-199.
LI Z P, ZHOU C Y, PAN S T, et al.Inhibitory Effects of Two Polysaccharides from Highland Barley on the Activity of Pancreatic α-Amylase[J]. Food Science, 2023, 44(22): 192-199.
[19] 冯学珍, 覃慧逢, 冯书珍. 网地藻多糖对α-葡萄糖苷酶体外抑制作用的研究[J]. 食品研究与开发, 2020, 41(3): 35-40.
FENG X Z, QIN H F, FENG S Z.Study on Inhibition Kinetics of Polysaccharide from Dictyota Dichotoma on Α-Glucosidase[J]. Food Research and Development, 2020, 41(3): 35-40.
[20] 刘静润, 郝文, 彭勇, 等. 覆盆子水提取液对鲜切苹果褐变的抑制作用[J]. 食品研究与开发, 2022, 43(18): 26-33.
LIU J R, HAO W, PENG Y, et al.Inhibitory Effect of Raspberry Water Extract on the Browning of Fresh-Cut Apple[J]. Food Research and Development, 2022, 43(18): 26-33.
[21] 路敏, 陈媛媛. 真空冷冻干燥技术在食品方面的应用研究[J]. 食品安全导刊, 2022(29): 168-170.
LU M, CHEN Y Y.Application of Vacuum Freeze Dried Technology in Food[J]. China Food Safety Magazine, 2022(29): 168-170.
[22] 王兆凯, 任广跃, 段续, 等. 预处理与干燥方式对枸杞干燥特性及品质影响的研究进展[J]. 食品与发酵工业, 2023, 49(19): 367-375.
WANG Z K, REN G Y, DUAN X, et al.Research Progress on Influence of Pretreatment and Drying Methods on Drying Characteristics and Quality of Goji[J]. Food and Fermentation Industries, 2023, 49(19): 367-375.
[23] 朱文学, 赵雅婷, 吴建章, 等. 根茎类中药材干燥技术与装备研究进展[J]. 中国农业大学学报, 2023, 28(1): 153-171.
ZHU W X, ZHAO Y T, WU J Z, et al.Research Progress on Drying Technology and Equipment of Rhizome Traditional Chinese Medicines[J]. Journal of China Agricultural University, 2023, 28(1): 153-171.
[24] 张帆, 钟伟华, 吕春秋, 等. 九蒸九制工艺过程中黄精理化品质特征及多糖组分的演变[J]. 现代食品科技, 2022, 38(9): 171-180.
ZHANG F, ZHONG W H, LYU C Q, et al.Physicochemical Characteristics of Polygonatum Sibiricum Root and Evolution of Its Polysaccharide Components during the Nine-Steam-Nine-Bask Process[J]. Modern Food Science and Technology, 2022, 38(9): 171-180.
[25] MOLINA-CALLE M, PRIEGO-CAPOTE F, LUQUE DE CASTRO M D. Development and Application of a Quantitative Method for Determination of Flavonoids in Orange Peel: Influence of Sample Pretreatment on Composition[J]. Talanta, 2015, 144: 349-355.
[26] XU G H, YE X Q, CHEN J C, et al.Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract[J]. Journal of Agricultural and Food Chemistry, 2007, 55(2): 330-335.
[27] 吴素青. 武夷水仙茶不同加工工艺对品质影响的研究[J]. 福建茶叶, 2023, 45(3): 14-16.
WU S Q.Study on the Influence of Different Processing Techniques on the Quality of Wuyi Narcissus Tea[J]. Tea in Fujian, 2023, 45(3): 14-16.
[28] 曾瑞, 袁阳华, 常超. 不同加工方式对全谷物中酚类含量的影响[J]. 武汉轻工大学学报, 2023, 42(1): 12-20.
ZENG R, YUAN Y H, CHANG C.Effect of Different Processing Methods on Phenolic Content in Whole Grains[J]. Journal of Wuhan Polytechnic University, 2023, 42(1): 12-20.
[29] 李春晓, 张兵, 李红艳. 炮制对药食同源植物功能成分和活性的影响[J]. 食品安全质量检测学报, 2022, 13(24): 7867-7874.
LI C X, ZHANG B, LI H Y.Effects of Processing on Functional Components and Activities of Medicinal and Edible Homologous Plants[J]. Journal of Food Safety & Quality, 2022, 13(24): 7867-7874.
[30] 丰程凤, 崔文玉, 夏智慧, 等. 蒸汽爆破对植物多酚及抗氧化活性的影响研究进展[J]. 食品工业科技, 2022, 43(4): 438-445.
FENG C F, CUI W Y, XIA Z H, et al.Research Progress in the Effects of Steam Explosion on Plant Polyphenols and Antioxidant Capacity[J]. Science and Technology of Food Industry, 2022, 43(4): 438-445.
[31] 王天梅, 王华磊, 李丹丹, 等. 不同炮制处理对多花黄精有效成分含量的影响[J]. 时珍国医国药, 2022, 33(4): 866-869.
WANG T M, WANG H L, LI D D, et al.Effects of Different Processing Treatments on the Contents of Active Ingredients in Polygonatum Cyrtonema[J]. Lishizhen Medicine and Materia Medica Research, 2022, 33(4): 866-869.
[32] 常亮, 陈珍珍, 王栋, 等. HPLC和GC-MS法测定三种黄精炮制过程中5-羟甲基糠醛的含量[J]. 中国药师, 2015, 18(3): 387-390.
CHANG L, CHEN Z Z, WANG D, et al.Contents of 5-HMF during the Processing of Three Species of Polygonatum by HPLC and GC-MS[J]. China Pharmacist, 2015, 18(3): 387-390.
[33] 蒲红霞, 戴睿, 韩凯翔, 等. 生物质制备5-羟甲基糠醛(5-HMF)及其研究进展[J]. 皮革科学与工程, 2020, 30(1): 23-26.
PU H X, DAI R, HAN K X, et al.Preparation of 5-Hydroxymethylfurfural(5-HMF) from Biomass and Its Research Progress[J]. Leather Science and Engineering, 2020, 30(1): 23-26.
[34] 曾林燕, 宋志前, 魏征, 等. 黄精炮制过程中新产生成分分离及含量变化[J]. 中草药, 2013, 44(12): 1584-1588.
ZENG L Y, SONG Z Q, WEI Z, et al.Isolation of Chemical Constituents Produced in Processing of Polygonati Rhizoma and Their Content Changes[J]. Chinese Traditional and Herbal Drugs, 2013, 44(12): 1584-1588.
[35] 孙浩月, 刘洋锋, 温欣冉, 等. 非酶褐变对食品质量的影响及其控制技术研究进展[J]. 农业科技与装备, 2017(10): 59-61.
SUN H Y, LIU Y F, WEN X R, et al.Research Progress on the Effect of Non-Enzymatic Browning on Food Quality and the Control Technology[J]. Agricultural Science & Technology and Equipment, 2017(10): 59-61.
[36] 王晓欣. 加工工艺对食凉茶化学成分及AGEs抑制活性影响的研究[D]. 杭州: 浙江工商大学, 2020: 54-58.
WANG X X.Study on the Influence of Processing Technology on Chemical Components and AGEs Inhibitory Activity of Edible Herbal Tea[D]. Hangzhou: Zhejiang Gongshang University, 2020: 54-58.
[37] NGUYEN H T, FELS-KLERX H J, BOEKEL M A. N ϵ- (Carboxymethyl)Lysine: A Review on Analytical Methods, Formation, and Occurrence in Processed Food, and Health Impact[J]. Food Reviews International, 2014, 30(1): 36-52.
[38] 易军鹏, 贺健, 董晶寅, 等. 不同干燥方式对酸菜干燥特性及品质的影响[J]. 食品与发酵工业, 2023, 49(12): 128-135.
YI J P, HE J, DONG J Y, et al.Effects of Different Drying Methods on Drying Characteristics and Quality of Sauerkraut[J]. Food and Fermentation Industries, 2023, 49(12): 128-135.
[39] 陈雁, 胡文忠, 侯梦阳, 等. 滇黄精多酚的提取工艺及其抗氧化活性研究[C]//中国食品科学技术学会第十八届年会摘要集, 2022: 426.
CHEN Y, HU W Z, HOU M Y, et al.Extraction Process of Polyphenols from Polygonatum Odoratum and Its Antioxidant Activity[C]//Summary of the 18th Annual Meeting of Chinese Institute of Food Science and Technology, 2022: 426.

基金

东北黄精健康食品加工关键技术研究及产业化示范项目(GA20C017)

PDF(859 KB)

Accesses

Citation

Detail

段落导航
相关文章

/