马铃薯种薯采后生理与贮藏保鲜技术研究进展

张彤彤, 陈富

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 140-148.

PDF(536 KB)
PDF(536 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 140-148. DOI: 10.19554/j.cnki.1001-3563.2025.11.015
农产品保鲜与食品包装

马铃薯种薯采后生理与贮藏保鲜技术研究进展

  • 张彤彤, 陈富
作者信息 +

Research Progress on Postharvest Physiology and Storage Preservation Technology of Potato Seed Tubers

  • ZHANG Tongtong, CHEN Fu
Author information +
文章历史 +

摘要

目的 系统总结马铃薯种薯采后生理特性与贮藏保鲜技术的研究进展,为提高种薯贮藏质量提供理论指导。方法 基于国内外文献,分析马铃薯种薯采后休眠特性、呼吸代谢、水分变化及生理老化等生理过程,评述温湿度调控、化学处理、物理干预及生物防控等保鲜技术的应用效果。结果 种薯休眠与内源激素动态平衡密切相关,温度是影响休眠持续时间的关键因素;呼吸强度与种薯活力直接相关,贮藏期间呼吸代谢变化显著;水分流失影响种薯生理状态和萌发潜力;生理老化与活性氧积累及抗氧化系统功能降低显著相关。科学的温湿度管理是确保种薯贮藏质量的基础;香芹酮等天然植物源抑芽剂因低毒性受到广泛关注;植物激素可有效调控休眠期和萌发过程;紫外线处理能有效抑制病害发生;生物防控通过有益微生物提高种薯抗病性。结论 马铃薯种薯贮藏过程中休眠特性与内源激素平衡密切相关,贮藏保鲜技术多样且各具特点。未来研究应侧重开发绿色低碳贮藏技术、智能化贮藏系统、多功能复合保鲜技术及微生物组调控策略,实现种薯贮藏保鲜技术向精准化、智能化和可持续方向发展。

Abstract

The work aims to systematically summarize the research progress on postharvest physiological characteristics and storage preservation technologies of potato seed tubers, providing theoretical guidance for improving the storage quality of seed tubers. Based on the literature in China and abroad, the postharvest physiological processes of potato seed tubers were analyzed, including dormancy characteristics, respiratory metabolism, moisture changes, and physiological aging, and the application effectiveness of preservation technologies were evaluated, such as temperature and humidity control, chemical treatments, physical intervention, and biological control. Seed tuber dormancy was closely related to the dynamic balance of endogenous hormones, with temperature being a key factor affecting the dormancy duration. Respiratory intensity directly correlated with seed tuber vigor, showing significant changes during storage. Moisture loss affected the physiological state and germination potential of seed tubers. Physiological aging was significantly associated with reactive oxygen species accumulation and reduced antioxidant system function. Scientific temperature and humidity management formed the foundation for ensuring the storage quality of seed tubers. Natural plant-derived sprout inhibitors such as carvone received widespread attention due to their low toxicity. Plant hormones could effectively regulate dormancy periods and germination processes. Ultraviolet treatment effectively inhibited disease occurrence. Biological control improved seed tuber disease resistance through beneficial microorganisms. The dormancy characteristics of potato seed tubers during storage are closely related to the endogenous hormone balance, and various storage preservation technologies offer distinct advantages. Future research should focus on developing green low-carbon storage technologies, intelligent storage systems, multifunctional composite preservation technologies, and microbiome regulation strategies to achieve precise, intelligent, and sustainable development of seed tuber storage preservation technology.

关键词

马铃薯种薯 / 休眠特性 / 贮藏保鲜 / 温湿度调控 / 化学调控 / 物理处理 / 生物防控

Key words

potato seed tubers / dormancy characteristics / storage preservation / temperature and humidity control / chemical regulation / physical treatment / biological control

引用本文

导出引用
张彤彤, 陈富. 马铃薯种薯采后生理与贮藏保鲜技术研究进展[J]. 包装工程(技术栏目). 2025, 46(11): 140-148 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.015
ZHANG Tongtong, CHEN Fu. Research Progress on Postharvest Physiology and Storage Preservation Technology of Potato Seed Tubers[J]. Packaging Engineering. 2025, 46(11): 140-148 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.015
中图分类号: TB485.9   

参考文献

[1] HAIDER M W, NAFEES M, IQBAL R, et al.Postharvest Starch and Sugars Adjustment in Potato Tubers of Wide-Ranging Dormancy Genotypes Subjected to Various Sprout Forcing Techniques[J]. Scientific Reports, 2023, 13: 14845.
[2] DI X N, WANG Q, ZHANG F, et al.Advances in the Modulation of Potato Tuber Dormancy and Sprouting[J]. International Journal of Molecular Sciences, 2024, 25(10): 5078.
[3] CHEN P L, YANG R X, BARTELS D, et al.Roles of Abscisic Acid and Gibberellins in Stem/Root Tuber Development[J]. International Journal of Molecular Sciences, 2022, 23(9): 4955.
[4] HU Q N, TANG C T, ZHOU X Y, et al.Potatoes Dormancy Release and Sprouting Commencement: A Review on Current and Future Prospects[J]. Food Frontiers, 2023, 4(3): 1001-1018.
[5] GONG H L, DUSENGEMUNGU L, IGIRANEZA C, et al.Molecular Regulation of Potato Tuber Dormancy and Sprouting: A Mini-Review[J]. Plant Biotechnology Reports, 2021, 15(4): 417-434.
[6] FOUKARAKI S G, COOLS K, TERRY L A.Differential Effect of Ethylene Supplementation and Inhibition on Abscisic Acid Metabolism of Potato (Solanum Tuberosum L.) Tubers during Storage[J]. Postharvest Biology and Technology, 2016, 112: 87-94.
[7] LIU H, WANG H Y, FENG Y H, et al.Integrated Physiological, Transcriptomic and Metabolomic Analyses Reveal Potential Mechanisms of Potato Tuber Dormancy Release[J]. Physiologia Plantarum, 2025, 177(1): e70081.
[8] HAIDER M W, NAFEES M, AMIN M, et al.Physiology of Tuber Dormancy and Its Mechanism of Release in Potato[J]. Journal of Horticultural Science & Technology, 2021: 13-21.
[9] SUN Y Y, SUN J, LIN C J, et al.Single-Cell Transcriptomics Applied in Plants[J]. Cells, 2024, 13(18): 1561.
[10] 刘亚武, 李国旗, 周薇, 等. 不同贮藏方式对马铃薯种薯生理特性的影响[J]. 西北农业学报, 2012, 21(4): 65-70.
LIU Y W, LI G Q, ZHOU W, et al.Effects of Different Storage Ways on Physiological Characters of Seed Potatoes[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(4): 65-70.
[11] LE X H, LEE C P, MONACHELLO D, et al.Metabolic Evidence for Distinct Pyruvate Pools Inside Plant Mitochondria[J]. Nature Plants, 2022, 8(6): 694-705.
[12] LIU Y M, QU J T, SHI Z W, et al.Comparative Genomic Analysis of the Tricarboxylic Acid Cycle Members in Four Solanaceae Vegetable Crops and Expression Pattern Analysis in Solanum Tuberosum[J]. BMC Genomics, 2021, 22(1): 821.
[13] MURIGI W W, NYANKANGA R O, SHIBAIRO S I.Effect of Storage Temperature and Postharvest Tuber Treatment with Chemical and Biorational Inhibitors on Suppression of Sprouts during Potato Storage[J]. Journal of Horticultural Research, 2021, 29(1): 83-94.
[14] NAG M, LAHIRI D, GARAI S, et al.Regulation of Β-Amylase Synthesis: A Brief Overview[J]. Molecular Biology Reports, 2021, 48(9): 6503-6511.
[15] SADAWARTI M J, SINGH S P, BUCKSETH T, et al.Elements Affecting Seed Potato Quality in India- a Review[J]. International Journal of Bio-Resource and Stress Management, 2023, 14(12): 1592-1607.
[16] SINGH B, BHARDWAJ V, KAUR K, et al.Potato Periderm Is the First Layer of Defence Against Biotic and Abiotic Stresses: A Review[J]. Potato Research, 2021, 64(1): 131-146.
[17] PENG X, LI Y L, WANG S, et al.Electron Beam Irradiation Inhibited Potato Sprouting by Regulating the Metabolism of Membrane Lipid Peroxidation and Antioxidant[J]. Potato Research, 2025, 68(1): 391-407.
[18] THAKUR M, TIWARI S, KATARIA S, et al.Recent Advances in Seed Priming Strategies for Enhancing Planting Value of Vegetable Seeds[J]. Scientia Horticulturae, 2022, 305: 111355.
[19] ZOU C M, VAN DER PUTTEN P E L, DATEMA M, et al. Physiological Age of Potato Seed Tubers of Contrasting Cultivars Hardly Affects Crop Performance in a Temperate Climate[J]. Potato Research, 2025, 68(1): 187-217.
[20] DEMASI M, AUGUSTO O, BECHARA E J H, et al. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond[J]. Antioxidants & Redox Signaling, 2021, 35(12): 1016-1080.
[21] HUI Z M, XU J F, JIAN Y Q, et al.Identification of Long-Distance Transport Signal Molecules Associated with Plant Maturity in Tetraploid Cultivated Potatoes (Solanum tuberosum L.)[J]. Plants, 2022, 11(13): 1707.
[22] HU J, DUAN Y F, HU J X, et al.Phylogenetic and Expression Analysis of the Sucrose Synthase and Sucrose Phosphate Synthase Gene Family in Potatoes[J]. Metabolites, 2024, 14(1): 70.
[23] KRUPEK F S, ZOTARELLI L, SARGENT S A, et al.Vine Desiccation Timing Strategies for Enhanced Harvest and Storage Quality of Early-Maturing Potato Cultivars[J]. Potato Research, 2022, 65(4): 829-851.
[24] LEVAJ B, PELAIĆ Z, GALIĆ K, et al.Maintaining the Quality and Safety of Fresh-Cut Potatoes (Solanum Tuberosum): Overview of Recent Findings and Approaches[J]. Agronomy, 2023, 13(8): 2002.
[25] MANI F, BETTAIEB T, DOUDECH N, et al.Physiological Mechanisms for Potato Dormancy Release and Sprouting: A Review[J]. African Crop Science Journal, 2014, 22(2): 155-174.
[26] AHMAD U, SHARMA L.A Review of Best Management Practices for Potato Crop Using Precision Agricultural Technologies[J]. Smart Agricultural Technology, 2023, 4: 100220.
[27] WU W Y, CHEN L, LIANG R T, et al.The Role of Light in Regulating Plant Growth, Development and Sugar Metabolism: A Review[J]. Frontiers in Plant Science, 2025, 15: 1507628.
[28] ZHOU B D, LI Y X, ZHANG C, et al.Potato Planter and Planting Technology: A Review of Recent Developments[J]. Agriculture, 2022, 12(10): 1600.
[29] 黄敏. 欧盟不再批准使用氯苯胺灵[J]. 中国农资, 2019(25): 8.
HUANG M.The EU no Longer Approves the Use of Chloroaniline[J]. China Agri-Production News, 2019(25): 8.
[30] 葛霞, 徐瑞, 李梅, 等. 香芹酮对马铃薯种薯发芽的调控机制[J]. 中国农业科学, 2020, 53(23): 4929-4939.
GE X, XU R, LI M, et al.Regulation Mechanism of Carvone on Seed Potato Sprouting[J]. Scientia Agricultura Sinica, 2020, 53(23): 4929-4939.
[31] 葛霞, 田世龙, 田甲春, 等. 香芹酮处理对马铃薯微型薯发芽调控及田间种植的影响[J]. 中国马铃薯, 2019, 33(3): 175-183.
GE X, TIAN S L, TIAN J C, et al.Effects of Carvone on Minituber Sprout Regulation and Field Planting[J]. Chinese Potato Journal, 2019, 33(3): 175-183.
[32] LIU Y J, YANG S R, WANG L, et al.The FoHmgr Gene: A Requirement for Growth, Conidiogenesis, Stress Response, Crude Toxin Secretion, and Pathogenicity in Fusarium Oxysporum, Causal Agent of Rice Seedling Blight[J]. Journal of Plant Pathology, 2025, 107(2): 985-994.
[33] THOMA J, ZHELJAZKOV V D.Sprout Suppressants in Potato Storage: Conventional Options and Promising Essential Oils—A Review[J]. Sustainability, 2022, 14(11): 6382.
[34] SIDDIQUI S A, SINGH S, BAHMID N A, et al.Release of Encapsulated Bioactive Compounds from Active Packaging/Coating Materials and Its Modeling: A Systematic Review[J]. Colloids and Interfaces, 2023, 7(2): 25.
[35] HOSSEN M A, SHIMUL I M, SAMEEN D E, et al.Essential Oil-Loaded Biopolymeric Particles on Food Industry and Packaging: A Review[J]. International Journal of Biological Macromolecules, 2024, 265: 130765.
[36] 杨轶, 李勇, 杨焕春, 等. 不同促芽剂对加工型马铃薯种薯发芽和产量的影响[J]. 中国马铃薯, 2024, 38(3): 219-225.
YANG Y, LI Y, YANG H C, et al.Effects of Sprouting Agents on Sprouting and Yield of Seed Tubers of Processing Potato Varieties[J]. Chinese Potato Journal, 2024, 38(3): 219-225.
[37] SINGH A, AULAKH C S, SIDHU A S.Increasing the Seed Production Efficiency of Autumn Potato with Plant Growth Regulators[J]. Crop Science, 2024, 64(2): 914-924.
[38] SUTTLE J C, CAMPBELL M A, OLSEN N L.Postharvest Ripening Physiology of Crops[M]. New York: CRC Press, 2016: 449-476.
[39] DOGRAMACI M, DOBRY E P, FORTINI E A, et al.Physiological and Molecular Mechanisms Associated with Potato Tuber Dormancy[J]. Journal of Experimental Botany, 2024, 75(19): 6093-6109.
[40] FOUKARAKI S G, COOLS K, CHOPE G A, et al.Impact of Ethylene and 1-MCP on Sprouting and Sugar Accumulation in Stored Potatoes[J]. Postharvest Biology and Technology, 2016, 114: 95-103.
[41] ZHANG Z P, TAN Y X, LI B J, et al.Effects of Exogenous Abscisic Acid Treatment on Periderm Suberification of Postharvest Mini-Tuber Potato from Aeroponic System and Its Possible Mechanisms[J]. Scientia Agricultura Sinica, 2023, 56(6): 1154-1167.
[42] RAHMAN M H, AZAD M O K, ISLAM M J, et al. Production of Potato (Solanum Tuberosum L.) Seed Tuber under Artificial LED Light Irradiation in Plant Factory[J]. Plants, 2021, 10(2): 297.
[43] RANJAN R K, SINGH D, RAI D.Postharvest Handling and Diseases of Horticultural Produce[M]. New York: CRC Press, 2021: 305-326.
[44] ZHU T D, PEI H D, LI Z W, et al.The Postharvest Application of Carvone, Abscisic Acid, Gibberellin, and Variable Temperature for Regulating the Dormancy Release and Sprouting Commencement of Mini-Tuber Potato Seeds Produced under Aeroponics[J]. Plants, 2023, 12(23): 3952.
[45] MONTES N, PAGÁN I. Light Intensity Modulates the Efficiency of Virus Seed Transmission through Modifications of Plant Tolerance[J]. Plants, 2019, 8(9): 304.
[46] ROCHA A B O, HONÓRIO S L, MESSIAS C L, et al. Effect of UV-C Radiation and Fluorescent Light to Control Postharvest Soft Rot in Potato Seed Tubers[J]. Scientia Horticulturae, 2015, 181: 174-181.
[47] PUSENKOVA L, LASTOCHKINA O, ERCIŞLI S. The Potential of Hydroponic Seed Minituber Enrichment with the Endophyte Bacillus Subtilis for Improving the Yield Components and Quality of Potato (Solanum Tuberosum L.)[J]. Agriculture, 2023, 13(8): 1626.
[48] STEGLIŃSKA A, KOŁTUNIAK A, MOTYL I, et al. Lactic Acid Bacteria as Biocontrol Agents Against Potato (Solanum Tuberosum L.) Pathogens[J]. Applied Sciences, 2022, 12(15): 7763.
[49] CHEBOTAR V К.THE EFFECT OF ENDOPHYTIC BACTERIA Bacillus Thuringiensis W65 AND B. Amyloliquefaciens P20 on the Yield and the Incidence of Potato Rhizoctoniosis and Late Blight[J]. Sel’skokhozyaistvennaya Biologiya, 2023, 58(3): 429-446.
[50] 李守强, 田甲春, 葛霞, 等. 不同保鲜袋包装对雾培马铃薯微型种薯贮藏保鲜效果的影响[J]. 河南农业科学, 2024, 53(4): 152-160.
LI S Q, TIAN J C, GE X, et al.Effect of Different Preservative Bags on Postharvest Storage Quality of Mini-Tuber Seed Potatoes from Aeroponic System[J]. Journal of Henan Agricultural Sciences, 2024, 53(4): 152-160.
[51] ABDELGAWAD G, KHATER E, BAHNASAWY A, et al.Potato Tubers Quality as Affected by Modified Atmospheric Conditions and Package Type during Storage[J]. Misr Journal of Agricultural Engineering, 2023, 40(3): 227-242.
[52] NYANKANGA R O, MURIGI W W, SHIBAIRO S I.Effect of Packaging Material on Shelf Life and Quality of Ware Potato Tubers Stored at Ambient Tropical Temperatures[J]. Potato Research, 2018, 61(3): 283-296.

基金

国家重点研发计划项目(2023FD2302100)

PDF(536 KB)

Accesses

Citation

Detail

段落导航
相关文章

/