智能包装在食品质量监测中的应用研究进展

胡子聪, 胡春, 周晨光

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 128-139.

PDF(1491 KB)
PDF(1491 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (11) : 128-139. DOI: 10.19554/j.cnki.1001-3563.2025.11.014
农产品保鲜与食品包装

智能包装在食品质量监测中的应用研究进展

  • 胡子聪, 胡春, 周晨光
作者信息 +

Research Progress on Application of Intelligent Packaging in Food Quality Monitoring

  • HU Zicong, HU Chun, ZHOU Chenguang
Author information +
文章历史 +

摘要

目的 探讨智能包装技术在食品质量监测中的应用现状,系统分析射频识别(RFID)标签、指示器型及传感器型智能包装的工作原理、功能特性,以及它们在食品贮运保鲜和新鲜度监测中的具体应用,并针对技术瓶颈提出未来的研究方向。结果 RFID标签可实时监测食品包装内的温度、湿度、pH及气体成分,结合区块链技术可以显著提升供应链的追溯效率;指示器型包装通过颜色的变化可以直观地反映氧气、二氧化碳、挥发性含氮化合物等气体浓度的变化情况,其中气体指示器、新鲜度指示器和时间-温度指示器(TTI)分别针对不同变质机制提供实时监测;传感器型包装利用天然色素(如姜黄素、花色苷)的pH敏感性或气体传感器的化学电阻/电位特性,实现对食品新鲜度的无损监测。此外,生物传感器通过检测微生物污染及农药残留,进一步保障食品安全。结论 智能包装技术在食品质量监测中显著展现出应用潜力,但我国相关研究仍处于起步阶段。未来需开发高精度、低成本传感器,推动与物联网、人工智能的深度融合,并研发环保可降解材料,以提升可持续性。通过技术创新和跨学科协作,智能包装有望构建智能化、信息化的食品质量监测体系,减少食品浪费,并保障消费者健康。

Abstract

The work aims to explore the application status of intelligent packaging technology in food quality monitoring, systematically analyze the working principles and functional characteristics of radio frequency identification (RFID) tags, indicator-type, and sensor-type intelligent packaging, and propose future research directions addressing technical limitations. RFID tags enable real-time monitoring of temperature, humidity, pH, and gas composition in food packaging and significantly enhanced supply chain traceability when integrated with blockchain. Indicator-type packaging visually reflected gas concentration changes (e.g., oxygen, carbon dioxide, volatile nitrogen compounds) through color variations, with gas indicators, freshness indicators, and time-temperature indicators (TTI) targeting distinct spoilage mechanisms. Sensor-type packaging utilized pH-sensitive natural pigments (e.g., curcumin, anthocyanins) or chemiresistive/ potentiometric gas sensors for non-destructive freshness monitoring. Biosensors further ensured food safety by detecting microbial contamination and pesticide residues. Intelligent packaging technology demonstrates significant potential in food quality monitoring, but the related research in China remains nascent. Future efforts should focus on developing high-precision, low-cost sensors, promoting interdisciplinary integration with IoT and AI, and advancing eco-friendly materials for sustainability. Through technological innovation and cross-disciplinary collaboration, intelligent packaging is expected to establish a smart, information-driven food quality monitoring system, reducing waste and safeguarding consumer health.

关键词

智能包装 / 贮运保鲜 / 新鲜度监测 / 包装技术

Key words

intelligent packaging / storage, transportation and preservation / freshness monitoring / packaging technology

引用本文

导出引用
胡子聪, 胡春, 周晨光. 智能包装在食品质量监测中的应用研究进展[J]. 包装工程(技术栏目). 2025, 46(11): 128-139 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.014
HU Zicong, HU Chun, ZHOU Chenguang. Research Progress on Application of Intelligent Packaging in Food Quality Monitoring[J]. Packaging Engineering. 2025, 46(11): 128-139 https://doi.org/10.19554/j.cnki.1001-3563.2025.11.014
中图分类号: TB487   

参考文献

[1] HE X, PU Y J, CHEN L Y, et al.A Comprehensive Review of Intelligent Packaging for Fruits and Vegetables: Target Responders, Classification, Applications, and Future Challenges[J]. Comprehensive Reviews in Food Science and Food Safety, 2023, 22(2): 842-881.
[2] WU Y N, ZENG Z L. Antibiotic Residues, Antimicrobial Resistance and Intervention Strategies of Foodborne Pathogens[J]. Antibiotics, 2024, 13(4): 321.
[3] KHODAEI S M, GHOLAMI-AHANGARAN M, SANI I K, et al.Application of Intelligent Packaging for Meat Products: A Systematic Review[J]. Veterinary Medicine and Science, 2023, 9(1): 481-493.
[4] VASUKI M T, KADIRVEL V, NARAYANA G P.Smart Packaging - An Overview of Concepts and Applications in Various Food Industries[J]. Food Bioengineering, 2023, 2(1): 25-41.
[5] ARIFIN M A Z, ADZAHAN N M, ABEDIN N H Z, et al. Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products[J]. Foods, 2023, 12(3): 456.
[6] ZUO J S, FENG J X, GAMEIRO M G, et al.RFID-Based Sensing in Smart Packaging for Food Applications: A Review[J]. Future Foods, 2022, 6: 100198.
[7] SHEN X Y, SHI G L, CHENG L, et al.Chipless RFID-Inspired Sensing for Smart Agriculture: A Review[J]. Sensors and Actuators A: Physical, 2023, 363: 114725.
[8] ALIZADEH SANI M, ZHANG W L, ABEDINI A, et al.Intelligent Packaging Systems for the Quality and Safety Monitoring of Meat Products: From Lab Scale to Industrialization[J]. Food Control, 2024, 160: 110359.
[9] SHAFIQ Y, GIBSON J S, KIM H, et al.A Reusable Battery-Free RFID Temperature Sensor[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6612-6626.
[10] HILLIER A, MAKAROVAITE V, HOLDER S J, et al.A Passive UHF RFID pH Sensor (Smart Polymers for Wireless Medical Sensing Devices)[C]//Loughborough Antennas & Propagation Conference (LAPC 2017). IET, 2017: 1-2.
[11] 候惠静, 刘秀英, 王平坪, 等. RFID技术在食品智能包装和供应链追溯中的应用研究[J]. 包装工程, 2024, 45(13): 158-165.
HOU H J, LIU X Y, WANG P P, et al.Application of RFID Technology in Food Intelligent Packaging and Supply Chain Traceability[J]. Packaging Engineering, 2024, 45(13): 158-165.
[12] AL MAHMUD M A, HOSSAN M Z, TIWARI A, et al. Reviewing the Integration of RFID and IoT in Supply Chain Management: Enhancing Efficiency and Visibility[J]. Journal of Posthumanism, 2025, 5(3): 409-437.
[13] ABEKOON T, BUTHPITIYA B L S K, SAJINDRA H, et al. A Comprehensive Review to Evaluate the Synergy of Intelligent Food Packaging with Modern Food Technology and Artificial Intelligence Field[J]. Discover Sustainability, 2024, 5(1): 160.
[14] HEO W, LIM S.A Review on Gas Indicators and Sensors for Smart Food Packaging[J]. Foods, 2024, 13(19): 3047.
[15] 李慧杰, 谢思源, 詹沾, 等. 微波辅助水热法制备TiO2及其在智能包装中的应用[J]. 包装学报, 2017, 9(2): 30-38.
LI H J, XIE S Y, ZHAN Z, et al.Synthesis of TiO2 by Microwave-Assisted Hydrothermal Method and Its Application in Intelligent Packaging[J]. Packaging Journal, 2017, 9(2): 30-38.
[16] WANG H, VAGIN S I, RIEGER B, et al.An Ultrasensitive Fluorescent Paper-Based CO2 Sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20507-20513.
[17] LYU J S, CHOI I, HWANG K S, et al.Development of a BTB-/TBA+ Ion-Paired Dye-Based CO2 Indicator and Its Application in a Multilayered Intelligent Packaging System[J]. Sensors and Actuators B: Chemical, 2019, 282: 359-365.
[18] ZHAI X D, WANG X Y, ZHANG J J, et al.Extruded Low Density Polyethylene-Curcumin Film: a Hydrophobic Ammonia Sensor for Intelligent Food Packaging[J]. Food Packaging and Shelf Life, 2020, 26: 100595.
[19] SUN L, ROTARU A, GARCIA Y.A Non-Porous Fe(Ⅱ) Complex for the Colorimetric Detection of Hazardous Gases and the Monitoring of Meat Freshness[J]. Journal of Hazardous Materials, 2022, 437: 129364.
[20] DODANGE S, SHEKARCHIZADEH H, KADIVAR M.Preparation of Active/Intelligent Packaging Antibacterial Film and Hydrogen Sulfide-Sensitive Indicator for Trout Fillets Freshness Based on Copper Nanoparticles[J]. Food Bioscience, 2024, 60: 104323.
[21] ZHANG J J, ZHANG J N, ZHANG L D, et al.Review of Recent Advances in Intelligent and Antibacterial Packaging for Meat Quality and Safety[J]. Foods, 2025, 14(7): 1157.
[22] CHUN H N, KIM B, SHIN H S.Evaluation of a Freshness Indicator for Quality of Fish Products during Storage[J]. Food Science and Biotechnology, 2014, 23(5): 1719-1725.
[23] KUSWANDI B, JAYUS, RESTYANA A, et al.A Novel Colorimetric Food Package Label for Fish Spoilage Based on Polyaniline Film[J]. Food Control, 2012, 25(1): 184-189.
[24] KIM Y H, YANG Y J, KIM J S, et al.Non-Destructive Monitoring of Apple Ripeness Using an Aldehyde Sensitive Colorimetric Sensor[J]. Food Chemistry, 2018, 267: 149-156.
[25] KUSWANDI B, MURDYANINGSIH E A.Simple on Package Indicator Label for Monitoring of Grape Ripening Process Using Colorimetric pH Sensor[J]. Journal of Food Measurement and Characterization, 2017, 11(4): 2180-2194.
[26] 董盛叶, 张雅琴, 符招弟, 等. 基于胺响应的花色苷水凝胶监测鱼/虾新鲜度的方法[J]. 食品科学, 2023, 44(18): 316-323.
DONG S Y, ZHANG Y Q, FU Z D, et al.Amine-Responsive Anthocyanin-Loaded Hydrogel for Monitoring the Freshness of Fish and Shrimp[J]. Food Science, 2023, 44(18): 316-323.
[27] LIU Y, LI L, YU Z M, et al.Principle, Development and Application of Time-Temperature Indicators for Packaging[J]. Packaging Technology and Science, 2023, 36(10): 833-853.
[28] LUO X Y, ZAITOON A, LIM L T.A Review on Colorimetric Indicators for Monitoring Product Freshness in Intelligent Food Packaging: Indicator Dyes, Preparation Methods, and Applications[J]. Comprehensive Reviews in Food Science and Food Safety, 2022, 21(3): 2489-2519.
[29] SOLTANI FIROUZ M, MOHI-ALDEN K, OMID M.A Critical Review on Intelligent and Active Packaging in the Food Industry: Research and Development[J]. Food Research International, 2021, 141: 110113.
[30] SUPPAKUL P, KIM D Y, YANG J H, et al.Practical Design of a Diffusion-Type Time-Temperature Indicator with Intrinsic Low Temperature Dependency[J]. Journal of Food Engineering, 2018, 223: 22-31.
[31] 钱艳峰, 王娅, 张明玥, 等. 用于监测食品新鲜度的时间-温度指示器研究现状[J]. 食品工业科技, 2022, 43(7): 10-20.
QIAN Y F, WANG Y, ZHANG M Y, et al.Research Status of Time-Temperature Indicator for Monitoring Food Freshness[J]. Science and Technology of Food Industry, 2022, 43(7): 10-20.
[32] PANDIAN A T, CHATURVEDI S, CHAKRABORTY S.Applications of Enzymatic Time-Temperature Indicator (TTI) Devices in Quality Monitoring and Shelf-Life Estimation of Food Products during Storage[J]. Journal of Food Measurement and Characterization, 2021, 15(2): 1523-1540.
[33] CHENG H, XU H, JULIAN MCCLEMENTS D, et al.Recent Advances in Intelligent Food Packaging Materials: Principles, Preparation and Applications[J]. Food Chemistry, 2022, 375: 131738.
[34] ANBUKARASU P, SAUVAGEAU D, ELIAS A L.Time-Temperature Indicator Based on Enzymatic Degradation of Dye-Loaded Polyhydroxybutyrate[J]. Biotechnology Journal, 2017, 12(9): 1700050.
[35] 郭志明, 张鹏敏, 李兆丰, 等. 食品智能仓储、包装技术与高端装备研究进展[J]. 中国食品学报, 2025, 25(1): 12-25.
GUO Z M, ZHANG P M, LI Z F, et al.Advance of Food Intelligent Storage and Packaging Technology and High-End Equipment[J]. Journal of Chinese Institute of Food Science and Technology, 2025, 25(1): 12-25.
[36] GARRIDO-LÓPEZ J, JIMÉNEZ-BUENDÍA M, TOLEDO- MOREO A, et al. Monitoring Perishable Commodities Using Cellular IoT: An Intelligent Real-Time Conditions Tracker Design[J]. Applied Sciences, 2024, 14(23): 11050.
[37] WANG Y, LIU Q, CHEN J, et al.Machine Learning-Based Prediction of Microbial Growth in Chilled Pork Using Time-Temperature Data[J]. Food Control, 2022, 142: 109252.
[38] LAN X, LIU Y Y, WANG L, et al.A Review of Curcumin in Food Preservation: Delivery System and Photosensitization[J]. Food Chemistry, 2023, 424: 136464.
[39] DALMEIDA A P, DE ALBUQUERQUE T L. Innovations in Food Packaging: From Bio-Based Materials to Smart Packaging Systems[J]. Processes, 2024, 12(10): 2085.
[40] 安朝霞, 苗雨阳, 杜玉婉, 等. 食品腐败变质生物因素相关机制研究进展[J]. 食品安全质量检测学报, 2022, 13(1): 86-93.
AN Z X, MIAO Y Y, DU Y W, et al.Research Progress on the Related Mechanisms of Biological Factors in Food Spoilage and Deterioration[J]. Journal of Food Safety & Quality, 2022, 13(1): 86-93.
[41] LI N, YANG X B, LIN D H.Development of Bacterial Cellulose Nanofibers/Konjac Glucomannan-Based Intelligent Films Loaded with Curcumin for the Fresh-Keeping and Freshness Monitoring of Fresh Beef[J]. Food Packaging and Shelf Life, 2022, 34: 100989.
[42] LIU Y W, MA Y L, LIU Y, et al.Fabrication and Characterization of pH-Responsive Intelligent Films Based on Carboxymethyl Cellulose and Gelatin/Curcumin/ Chitosan Hybrid Microcapsules for Pork Quality Monitoring[J]. Food Hydrocolloids, 2022, 124: 107224.
[43] SAID N S, SARBON N M.Monitoring the Freshness of Fish Fillets by Colorimetric Gelatin Composite Film Incorporated with Curcumin Extract[J]. Biocatalysis and Agricultural Biotechnology, 2023, 50: 102722.
[44] QU X Y, WANG X X, GUAN W Q, et al.Progress of Curcumin in Food Packaging: A Review[J]. Food and Bioprocess Technology, 2024, 17(10): 2973-2997.
[45] MIAO Z Y, YANG M C, ABDALKARIM S Y H, et al. In Situ Growth of Curcumin-Loaded Cellulose Composite Film for Real-Time Monitoring of Food Freshness in Smart Packaging[J]. International Journal of Biological Macromolecules, 2024, 279: 135090.
[46] ECHEGARAY N, MUNEKATA P E S, GULLÓN P, et al. Recent Advances in Food Products Fortification with Anthocyanins[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(6): 1553-1567.
[47] ZHANG J F, LIU S M, XIE C X, et al.Recent Advances in pH-Sensitive Indicator Films Based on Natural Colorants for Smart Monitoring of Food Freshness: A Review[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(33): 12800-12819.
[48] 雷桥, 张文惠. 负载天然色素的生物基智能包装指示器研究进展[J]. 食品科学技术学报, 2024, 42(1): 20-31.
LEI Q, ZHANG W H.Research Progress of Bio-Based Intelligent Packaging Indicator Loaded with Natural Pigments[J]. Journal of Food Science and Technology, 2024, 42(1): 20-31.
[49] WANG D Y, ZHANG M, JIANG Q Y, et al.Intelligent System/Equipment for Quality Deterioration Detection of Fresh Food: Recent Advances and Application[J]. Foods, 2024, 13(11): 1662.
[50] GHORBANI M, DIVSALAR E, MOLAEI R, et al.A Halochromic Indicator Based on Polylactic Acid and Anthocyanins for Visual Freshness Monitoring of Minced Meat, Chicken Fillet, Shrimp, and Fish Roe[J]. Innovative Food Science & Emerging Technologies, 2021, 74: 102864.
[51] YANG Z K, ZHAI X D, ZOU X B, et al.Bilayer pH-Sensitive Colorimetric Films with Light-Blocking Ability and Electrochemical Writing Property: Application in Monitoring Crucian Spoilage in Smart Packaging[J]. Food Chemistry, 2021, 336: 127634.
[52] NABI B G, MUKHTAR K, AHMED W, et al.Natural Pigments: Anthocyanins, Carotenoids, Chlorophylls, and Betalains as Colorants in Food Products[J]. Food Bioscience, 2023, 52: 102403.
[53] HU H X, YAO X Y, QIN Y, et al.Development of Multifunctional Food Packaging by Incorporating Betalains from Vegetable Amaranth (Amaranthus Tricolor L) into Quaternary Ammonium Chitosan/Fish Gelatin Blend Films[J]. International Journal of Biological Macromolecules, 2020, 159: 675-684.
[54] QIN Y, LIU Y P, ZHANG X, et al.Development of Active and Intelligent Packaging by Incorporating Betalains from Red Pitaya (Hylocereus Polyrhizus) Peel into Starch/Polyvinyl Alcohol Films[J]. Food Hydrocolloids, 2020, 100: 105410.
[55] 王纪鹏, 虢有婕, 韩毅, 等. pH敏感性材料在智能食品包装中的应用进展[J]. 食品工业科技, 2023, 44(1): 48-55.
WANG J P, GUO Y J, HAN Y, et al.Application Progress of pH-Sensitive Materials in Smart Food Packaging[J]. Science and Technology of Food Industry, 2023, 44(1): 48-55.
[56] UPADHYAY A, AGBESI P, ARAFAT K M Y, et al. Bio-Based Smart Packaging: Fundamentals and Functions in Sustainable Food Systems[J]. Trends in Food Science & Technology, 2024, 145: 104369.
[57] JAGANNATHAN M, DHINASEKARAN D, RAJENDRAN A R, et al.Selective Room Temperature Ammonia Gas Sensor Using Nanostructured ZnO/CuO@graphene on Paper Substrate[J]. Sensors and Actuators B: Chemical, 2022, 350: 130833.
[58] AL SHBOUL A M, IZQUIERDO R. Printed Chemiresistive In2O3 Nanoparticle-Based Sensors with Ppb Detection of H2S Gas for Food Packaging[J]. ACS Applied Nano Materials, 2021, 4(9): 9508-9517.
[59] SHEN J B, XU S S, ZHAO C, et al.Bimetallic Au@Pt Nanocrystal Sensitization Mesoporous Α-Fe2O3 Hollow Nanocubes for Highly Sensitive and Rapid Detection of Fish Freshness at Low Temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57597-57608.
[60] FAN G J, CHEN D L, LI T, et al.Enhanced Room- Temperature Ammonia-Sensing Properties of Polyaniline-Modified WO3 Nanoplates Derived via Ultrasonic Spray Process[J]. Sensors and Actuators B: Chemical, 2020, 312: 127892.
[61] KIM K H, PARK C S, PARK S J, et al.In-Situ Food Spoilage Monitoring Using a Wireless Chemical Receptor-Conjugated Graphene Electronic Nose[J]. Biosensors and Bioelectronics, 2022, 200: 113908.
[62] WANG Z M, CHANG J Y, ZHI H, et al.A PDA Functionalized CNT/PANI Self-Powered Sensing System for Meat Spoilage Biomarker NH3 Monitoring[J]. Sensors and Actuators B: Chemical, 2022, 356: 131292.
[63] CHANG J Y, ZHANG X B, WANG Z M, et al.Polyaniline-Reduced Graphene Oxide Nanosheets for Room Temperature NH3 Detection[J]. ACS Applied Nano Materials, 2021, 4(5): 5263-5272.
[64] TANG X H, RASKIN J P, KRYVUTSA N, et al.An Ammonia Sensor Composed of Polypyrrole Synthesized on Reduced Graphene Oxide by Electropolymerization[J]. Sensors and Actuators B: Chemical, 2020, 305: 127423.
[65] DU W X, LEE H J, BYEON J H, et al.Highly Sensitive Single-Walled Carbon Nanotube/Polypyrrole/Phenylalanine Core-Shell Nanorods for Ammonia Gas Sensing[J]. Journal of Materials Chemistry C, 2020, 8(44): 15609-15615.
[66] MA Z, CHEN P, CHENG W, et al.Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection[J]. Nano Letters, 2018, 18(7): 4570-4575.
[67] NAMI M, TAHERI M, DEEN I A, et al.Nanomaterials in Chemiresistive and Potentiometric Gas Sensors for Intelligent Food Packaging[J]. TrAC Trends in Analytical Chemistry, 2024, 174: 117664.
[68] MKHARI T, ADEYEMI J O, FAWOLE O A.Recent Advances in the Fabrication of Intelligent Packaging for Food Preservation: A Review[J]. Processes, 2025, 13(2): 539.
[69] DU L Z, HUANG X W, LI Z H, et al.Application of Smart Packaging in Fruit and Vegetable Preservation: A Review[J]. Foods, 2025, 14(3): 447.
[70] HAO L L, GU H J, DUAN N, et al.A Chemiluminescent Aptasensor Based on Rolling Circle Amplification and Co2+/N-(Aminobutyl)-N-(Ethylisoluminol) Functional Flowerlike Gold Nanoparticles for Salmonella Typhimurium Detection[J]. Talanta, 2017, 164: 275-282.
[71] DENG Y, LIU K K, LIU Y, et al.An Novel Acetylcholinesterase Biosensor Based on Nano-Porous Pseudo Carbon Paste Electrode Modified with Gold Nanoparticles for Detection of Methyl Parathion[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9460-9467.
[72] MUTREJA R, JARIYAL M, PATHANIA P, et al.Novel Surface Antigen Based Impedimetric Immunosensor for Detection of Salmonella Typhimurium in Water and Juice Samples[J]. Biosensors and Bioelectronics, 2016, 85: 707-713.
[73] GUO R Y, HUANG F C, CAI G Z, et al.A Colorimetric Immunosensor for Determination of Foodborne Bacteria Using Rotating Immunomagnetic Separation, Gold Nanorod Indication, and Click Chemistry Amplification[J]. Mikrochimica Acta, 2020, 187(4): 197.
[74] XING G W, LI N, LIN H F, et al.Microfluidic Biosensor for One-Step Detection of Multiplex Foodborne Bacteria ssDNA Simultaneously by Smartphone[J]. Talanta, 2023, 253: 123980.
[75] LU D Q, PANG G C, XIE J B.A New Phosphothreonine Lyase Electrochemical Immunosensor for Detecting Salmonella Based on Horseradish Peroxidase/GNPS- Thionine/Chitosan[J]. Biomedical Microdevices, 2017, 19(1): 12.
[76] EL-MOGHAZY A Y, WISUTHIPHAET N, YANG X, et al. Electrochemical Biosensor Based on Genetically Engineered Bacteriophage T7 for Rapid Detection of Escherichia Coli on Fresh Produce[J]. Food Control, 2022, 135: 108811.
[77] BACCHU M S, ALI M R, DAS S, et al.A DNA Functionalized Advanced Electrochemical Biosensor for Identification of the Foodborne Pathogen Salmonella Enterica Serovar Typhi in Real Samples[J]. Analytica Chimica Acta, 2022, 1192: 339332.
[78] HILLS K D, OLIVEIRA D A, CAVALLARO N D, et al.Actuation of Chitosan-Aptamer Nanobrush Borders for Pathogen Sensing[J]. Analyst, 2018, 143(7): 1650-1661.
[79] BANERJEE T, SULTHANA S, SHELBY T, et al.Multiparametric Magneto-Fluorescent Nanosensors for the Ultrasensitive Detection of Escherichia Coli O157:H7[J]. ACS Infectious Diseases, 2016, 2(10): 667-673.
[80] VARSHNEY M, YANG L J, SU X L, et al.Magnetic Nanoparticle-Antibody Conjugates for the Separation of Escherichia Coli O157:H7 in Ground Beef[J]. Journal of Food Protection, 2005, 68(9): 1804-1811.

基金

平阳县科技强农产业研究院产业提升项目(2023PY006,2023PYII08); 温州市基础性公益科研项目(N20240003); 温州科技特派员项目(X2023083); 浙江省教育厅一般科研项目(Y202352748)

PDF(1491 KB)

Accesses

Citation

Detail

段落导航
相关文章

/