基于灰色回归模型广州市果蔬类生鲜农产品冷链物流需求预测

刘子玲, 谢如鹤, 廖晶, 何佳雯, 罗湖桥

包装工程(技术栏目) ›› 2024 ›› Issue (3) : 243-250.

PDF(537 KB)
PDF(537 KB)
包装工程(技术栏目) ›› 2024 ›› Issue (3) : 243-250. DOI: 10.19554/j.cnki.1001-3563.2024.03.028

基于灰色回归模型广州市果蔬类生鲜农产品冷链物流需求预测

  • 刘子玲1, 谢如鹤1, 何佳雯1, 廖晶2, 罗湖桥3
作者信息 +

Cold Chain Logistics Demand Forecast for Fresh Agricultural Products like Fruit and Vegetable in Guangzhou City Based on Gray Regression Model

  • LIU Ziling1, XIE Ruhe1, HE Jiawen1, LIAO Jing2, LUO Huqiao3
Author information +
文章历史 +

摘要

目的 通过对不同预测方法的误差进行对比研究,选取预测精度较高的方法,促进部门科学化决策。方法 从农产品供给、社会经济水平、冷链物流保障、居民规模与消费能力四大维度选取15个指标来构建影响因素指标体系,对影响因素与冷链物流需求进行灰色关联度分析。采用GM(1,1)、GM(1,6)与主成分-多元回归线性模型对果蔬类生鲜农产品冷链物流需求进行预测。结果 GM(1,1)预测模型、GM(1,6)预测模型、主成分-多元回归线性预测模型的预测误差分别为2.97%、1.70%、2.53%。结论 GM(1,6)预测模型预测精度最高,该模型适用于中短期的冷链物流需求预测,具有较高的应用价值。

Abstract

The work aims to conduct a comparative study on the errors of different forecast methods, so as to select the method with higher accuracy and promote the scientific decision-making of relevant departments. Fifteen indicators were selected from the four dimensions of agricultural supply, socio-economic level, cold chain logistics security, size of the population and consumption capacity to construct the indicator system of influencing factors, and a gray correlation analysis was carried out between each influencing factor and cold chain logistics demand. The GM(1, 1) prediction model, GM(1, 6) prediction model and principal component-multiple regression linear prediction model were used to forecast cold chain logistics demand. The prediction errors of the GM(1, 1) prediction model, GM(1, 6) prediction model and principal component-multiple regression linear prediction model were 2.97%, 1.70% and 2.53%. The GM(1, 6) prediction model has high prediction accuracy, which is suitable for short and medium term cold chain logistics demand forecast and has high application value.

引用本文

导出引用
刘子玲, 谢如鹤, 廖晶, 何佳雯, 罗湖桥. 基于灰色回归模型广州市果蔬类生鲜农产品冷链物流需求预测[J]. 包装工程(技术栏目). 2024(3): 243-250 https://doi.org/10.19554/j.cnki.1001-3563.2024.03.028
LIU Ziling, XIE Ruhe, LIAO Jing, HE Jiawen, LUO Huqiao. Cold Chain Logistics Demand Forecast for Fresh Agricultural Products like Fruit and Vegetable in Guangzhou City Based on Gray Regression Model[J]. Packaging Engineering. 2024(3): 243-250 https://doi.org/10.19554/j.cnki.1001-3563.2024.03.028

基金

国家社会科学基金项目(17BJY102);广东省农产品保鲜物流共性关键技术研发创新团队(2021KJ145)

PDF(537 KB)

Accesses

Citation

Detail

段落导航
相关文章

/