非对称关键点注意力结构的交互式图像分割方法

孙刘杰, 樊景星

包装工程(技术栏目) ›› 2022 ›› Issue (11) : 292-301.

PDF(40358 KB)
PDF(40358 KB)
包装工程(技术栏目) ›› 2022 ›› Issue (11) : 292-301. DOI: 10.19554/j.cnki.1001-3563.2022.11.037

非对称关键点注意力结构的交互式图像分割方法

  • 孙刘杰, 樊景星
作者信息 +

Interactive Image Segmentation with Asymmetric Key Points Attention

  • SUN Liu-jie, FAN Jing-xing
Author information +
文章历史 +

摘要

目的 人机交互信息在交互式图像分割过程中具有重要意义,为了提高交互信息的使用效率,文中提出一种优化方法。方法 提出一种非对称注意力结构,将交互信息通过该结构融合到交互式图像分割算法(IOG)的特征提取网络中。该算法能够进一步强化关键点信息对图像分割所起到的引导作用。结果 非对称注意力结构能够在不增加交互成本的条件下,在PASCAL数据集上达到92.2%的准确率,比目前最好的IOG分割算法提高了0.2%。仅在小样本PASCAL数据集上训练时,文中算法具有更明显的优势,比现有最好的IOG算法的准确率提高了1.3%。结论 通过中文的非对称注意力结构,能够在不增加交互成本的同时提升网络的分割精度。

Abstract

In the process of interactive image segmentation, human-computer interaction plays an important role. For higher efficiency of human-computer interaction, this paper describes a structure of asymmetric key points attention, which can integrate human-computer interaction into the feature extraction network of interactive object segmentation with inside-outside guidance (IOG), based on guidance reinforcement of IOG for image segmentation of key points. This structure enhanced the accuracy to 92.2% without increasing the cost of interaction on PASCAL, 0.2% higher IOG (current best segmentation algorithm). While only training on PASCAL, the accuracy of this structure was obviously 1.3% higher than IOG. Under the assistance of the structure of asymmetric key points attention, the accuracy of segmentation can be improved without increasing the cost of interaction.

引用本文

导出引用
孙刘杰, 樊景星. 非对称关键点注意力结构的交互式图像分割方法[J]. 包装工程(技术栏目). 2022(11): 292-301 https://doi.org/10.19554/j.cnki.1001-3563.2022.11.037
SUN Liu-jie, FAN Jing-xing. Interactive Image Segmentation with Asymmetric Key Points Attention[J]. Packaging Engineering. 2022(11): 292-301 https://doi.org/10.19554/j.cnki.1001-3563.2022.11.037

PDF(40358 KB)

Accesses

Citation

Detail

段落导航
相关文章

/